I think you know the drill on margins and legibility. I can't give points for what I can't read. Take a minute, at the end, to make sure your work is organized and submitted in proper order.

Name

NO GRAPHING CALCULATORS !!!

NEW MATERIAL from Chapter 6:

- 1. We convert (x, y) = (-3, 4) to polar coordinates, (r, θ) .
 - a. Assume r > 0 and $\theta \in [0, 2\pi]$. Find the *exact* polar coordinates of the point. To do this, you *should* end up with an arctangent in your answer.
 - b. Approximate your answer in part a, with 4-decimal-place accuracy. Give answer in both radians and degrees.
 - c. Find two more representations for your answer in part a.
 - d. Show the point in a quick sketch.
- 2. Convert $(r, \theta) = \left(-4, \frac{5\pi}{6}\right)$ to rectangular coordinates.
 - a. Give an exact answer and a decimal answer, accurate to 4 decimal places.
 - b. Show the point in a quick sketch.
- 3. Sketch the graph of $r = 3\sin \theta$.

OLD MATERIAL

- 4. Consider the triangle in the figure. Assume lengths are in centimeters.
 - a. (5 pts) Use the Law of Cosines to find the length of side **a**.
 - b. (5 pts) Use the Law of Sines to find angles B and C.
- 5. Consider the directed line segment \overrightarrow{PQ} in the figure on the right. I want you to provide some basic facts about the vector \overline{u} :
 - a. (5 pts) Express the vector $\overline{u} = \overline{PQ}$ in component form.
 - b. (5 pts) Compute the magnitude of \overline{u} . Leave your answer in simplified radical form.
 - c. (5 pts) Find the direction angle of \overline{u} . Use degrees, rounded to 4 places.
- C AB P(7, 3) $\overline{Q}(-1, -3)$

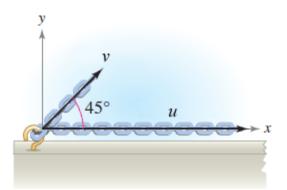
- 6. Let $\overline{u} = \langle 4, 5 \rangle$.
 - a. (5 pts) Express \overline{u} as a linear combination of the canonical (standard) unit vectors \overline{i} and \overline{j} .
 - b. (5 pts) What's another word for the sum of 2 vectors?

- 7. Forces with magnitudes $\|\overline{u}\| = 90$ N and $\|\overline{v}\| = 25\sqrt{2}$ N are acting on a hook, as shown in the figure.
 - a. (5 pts) Express \overline{u} and \overline{v} in component form.
 - b. (5 pts) Express the resultant force, in component form.
 - c. (5 pts) Find the direction angle of the resultant force, in degrees, rounded to 4 decimal places.
- 8. Let $f(x) = 3x^3 8x^2 + 10x 4$.
 - a. (5 pts) Use synthetic division to find f(2).
 - b. (5 pts) Use synthetic division to show that x = 1+i is a solution of the equation f(x)=0.
 - c. (5 pts) Find the linear factorization of f that is promised to us in the Fundamental Theorem of Algebra.
- 9. Let z = 8 8i
 - a. (5 pts) Find $z + \overline{z}$ and $z\overline{z}$, where \overline{z} is the complex conjugate of z.
 - b. (5 pts) Express z in trigonometric form.

10. Let $z = 16\left(\cos\left(\frac{5\pi}{3}\right) + i\sin\left(\frac{5\pi}{3}\right)\right)$.

- a. (5 pts) Express z in standard form.
- b. (5 pts) Find the principal 4th root of z, i.e., find $\sqrt[4]{z}$. Leave z in trigonometric form for this.
- c. (5 pts) Now, find *all* the 4^{th} roots of z, in trigonometric form.
- d. (5 pts) Find the trigonometric form of z^2 .
- e. (5 pts) Finally, let $w = 3\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right)$, and find the trigonometric form of the product $z \cdot w$.

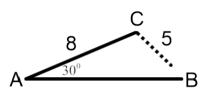
Answer as many as you have time for! Woo-Hoo!


B1 (5 pts) Find the area of the triangle in the 1st problem.

B2 A gun with a muzzle velocity of 370 meters per second is fired, with an angle of

- 15° from the horizontal.
- a. (5 pts) Find the horizontal and vertical components of the bullet, as it leaves the muzzle, accurate to 4 decimal places.
- b. (5 pts) Use a half-angle formula to find the *exact* value for the answer to the previous.
- c. (5 pts) Using 9.8 $\frac{m}{s^2}$ for the acceleration due to gravity, and neglecting air

friction, predict where and when the bullet will hit the ground, in the gun question.



- **B3** (5 pts) Find $\sin(2u), \cos(2u)$ and $\tan(2u)$, given that $\cos(u) = -\frac{2}{5}$ and $\sin(u) < 0$. Use the 1st two answers to *build* the 3rd. It's *silly* to go back to your cheat sheet and deal with the mess.
- **B4** (5 pts) Find $\sin\left(\frac{u}{2}\right)$, $\cos\left(\frac{u}{2}\right)$ and $\tan\left(\frac{u}{2}\right)$, given that $\cos(u) = -\frac{2}{5}$ and $\sin(u) < 0$. Use the 1st two answers

to *build* the 3rd. It's *silly* to go back to your cheat sheet and deal with the mess.

- **B5** (5 pts) Build a sine function that achieves its maximum height of y = 62 meters at time x = 5 seconds and its minimum height of y = -8 meters at x = 13 seconds.
- **B6** (5 pts) Find all solutions of the equation $2\sin^2(3x) 1 = 0$ in the interval $[0, 2\pi)$.
- **B7** (5 pts) Sketch the graph of $4\sin\left(\frac{2\pi}{7}x \frac{26\pi}{7}\right) 11$.
- **B8** The triangle described has 2 possible solutions: (See Figure on Right) Angle $A = 30^{\circ}$, side b = 8 and side a = 5.

- a. (5 pts) Prove there are 2 possible triangles from this ambiguous information.
- b. (5 pts) Find both triangles.
- c. (5 pts) Use your work to find the area of both triangles.