• Question Details LarTrig9 1.8.0

Fill in the blank.

A(n) ---Select--- v measures the acute angle a path or line of sight makes with a fixed north-south line.

Bearing.

LarTrig9 1.8.002. [2596932] • Question Details

Fill in the blank.

 \vee when its distance d from the origin A point that moves on a coordinate line is said to be in simple |---Select--at time t is given by either $d = a \sin \omega t$ or $d = a \cos \omega t$. harmonic motion

• Question Details

Fill in the blank.

The time for one complete cycle of a point in simple harmonic motion is its ---Select--- v.

Question Details

Fill in the blank.

The number of cycles per second of a point in simple harmonic motion is its ---Select--- ∨ frequency

$$f = \frac{1}{T}$$

5. • Question Details

LarTrig9 1.8.005. [24632

Solve the right triangle shown in the figure for all unknown sides and angles. Round your answers to two decimal places.

$$A = 30^{\circ}, \quad b = 9$$

$$B = 60^\circ = \overline{3}$$
 rad

$$\cos(30^\circ) = \frac{9}{3}$$

$$c \cos (30) = 9$$

$$c = \frac{9}{100} = \frac{9}{100}$$

Question Details

Solve the right triangle shown in the figure. Round your answers to two decimal places.

$$C \qquad b \approx 10.17$$

$$C = 90^{\circ}$$

triangle shown in the figure. Round your answers to two decimal places.

$$A = 90^{\circ} - 53^{\circ} = 32^{\circ} = A$$

$$A = 90^{\circ} - 53^{\circ} = 32^{\circ} = A$$

$$Cos(32^{\circ}) = \frac{b}{12}$$

$$Cos(32^{\circ}) = \frac{a}{12}$$

$$Cos(32^{\circ}) = \frac{a}{12}$$

$$Cos(32^{\circ}) = \frac{b}{12}$$

$$Cos(32^{\circ}) = \frac{a}{12}$$

$$C$$

$$(2\cos(32^\circ)) = \frac{12}{b} \approx 10.17$$

$$\sin(A) = \frac{a}{12}$$

$$12 \sin (A) = a \approx 6.3$$

Question Details

LarTrig9 1.8.008. [32208

Solve the right triangle shown in the figure for all unknown sides and angles. Round your answers to two decimal places.

$$A = 9.9^{\circ}, \quad a = 45.5$$

$$80.^{\circ}$$

$$45.5 = a$$

$$C \approx 264.64$$

$$C \approx 264.64$$

$$C \approx 3.64.64$$

$$C \approx 45.5$$

$$C = 45.5$$

$$C \approx 64.64$$

$$C$$

$$S_{1}^{(q,q^{0})} = \frac{45.5}{C}$$
 $\frac{C}{45.5} = CSC(9.9^{0})$
 $C = 45.5 CSC(9.9^{0})$
 $C = 45.5 CSC(9.9^{0})$

$$C = \frac{45.5}{5.2(9.5^{\circ})} = 45.5 \text{ csc}$$

$$B = 90^{\circ} - 9.9^{\circ} = 80.1^{\circ} = B$$

8. • Question Details

LarTrig9 1.8.009. [24632

Solve the right triangle shown in the figure for all unknown sides and angles. Round your answers to two decimal places. I dyrees? Radians?

$$12^{2} + 16^{2}$$

$$= 144 + 256$$

$$= 400 = 20$$

$$\frac{2}{C} = \sin A = \frac{12}{20} = \frac{3}{5}$$

ancsin
$$(\sin(A)) = A = \arcsin(A)$$

Thue if $-\frac{\pi}{2} \le A \le \frac{\pi}{2}$

$$B = 90^{\circ} - A \approx 90^{\circ} - 36.97^{\circ}$$

$$= 53.13^{\circ} \approx B$$

Question Details

LarTrig9 1.8.010. [2550

Solve the right triangle shown in the figure for all unknown sides and angles. Round your answers to two decimal places.

$$a = 40$$
, $c = 46$

10. • Question Details

LarTrig9 1.8.011. [2463:

Solve the right triangle shown in the figure for all unknown sides and angles. Round your answers to two decimal places.

$$b = 16, c = 69$$

11. • Question Details

LarTrig9 1.8.014. [255

Solve the right triangle shown in the figure for all unknown sides and angles. Round your answers to two decimal places

$$B = 64^{\circ} 24', \quad a = 154.5$$

$$64^{\circ}24' = 64^{\circ} + 24'$$

$$= 64^{\circ} + \left(24'\right) \left(\frac{1^{\circ}}{60'}\right)$$

$$\frac{154.5}{c} = \cos(64^{\circ}24^{\circ})$$

$$\frac{154.5}{\cos(64^{\circ}24^{\circ})} = C \approx 357.57$$

12. • Question Details

La

Find the altitude of the isosceles triangle shown in the figure. Round your answer to two decimal places.

$$\theta = 45^{\circ}, \ b = 8$$

14. • Question Details LarTrig9 1.8.022. [2456857]

The length of a shadow of a tree is 160 feet when the angle of elevation of the sun is 37°. Approximate the height of the tree. (Round your answer to one decimal place.)

ft

Let x = height of thee (ft)

ion Details LarTrig9 1.8.026. [2456209]

serve a plane approaching overhead and assume that its speed is 650 miles per hour. The angle of elevation of the s 15° at one time and 58° one minute later. Approximate the altitude of the plane. (Round your answer to two decimal) mi

17.	+ Question Details Larings 1.8.034. [245604
	During takeoff, an airplane's angle of ascent is 17° and its speed is 300 feet per second. (a) Find the plane's altitude after 1 minute. (Round your answer to the nearest whole number.) [b) How long will it take the plane to climb to an altitude of 10,000 feet? (Round your answer to one decimal place sec
18.	Question Details LarTrig9 1.8.036. [2456170] A jet leaves Reno, Nevada and is headed toward Miami, Florida at a bearing of 100°. The distance between the two cities is
	approximately 2472 miles. (a) How far north and how far west is Reno relative to Miami? (Round your answers to two decimal places.) miles north miles west
	(b) If the jet is to return directly to Reno from Miami, at what bearing should it travel?

19. • Question Details LarTrig9 1.8.042.Ml. [2463203] Fire tower A is x = 25 kilometers due west of fire tower B. A fire is spotted from the towers, and the bearings from A and B are θ = N 80° E and ϕ = N 52° W, respectively (see figure). Find the distance d of the fire from the line segment AB. (Round your answer to two decimal places.) d=distance to fire from AB (Km) $\frac{d}{25-x} = \tan 38^\circ \implies d = (25-x) \tan 38^\circ$ $\frac{d}{x} = \tan 10^\circ \implies d = x \tan 10^\circ$ $(25-x) \tan (38^\circ) = x \tan (10^\circ)$ Linear, in x. 25 Km $(25-x)2=x\cdot b$ 252-2x = bx -ax-bx = -25ax (-2-b) = -25a 350/tan(12.5) 1578.74797<u>6</u> to find d: d=x tam (10°) |Ans*tan(≈ 20,39676376 tan (10°) ~3.59648919 ~[3.6 Km % d Question Details 20. Find a model for simple harmonic motion satisfying the specified conditions. Displacement Amplitude Period (t=0)T= 4 $6x = 2\pi$ when 0 1.9 meters 4 seconds $\frac{11}{2} \times = 2\pi \quad \text{when}$ $\times = \frac{2\pi}{(11)} = (2\pi)(\frac{2}{\pi}) = 4$

21. • Question Details

Find a model for simple harmonic motion satisfying the specified conditions.

Displacement, d (t = 0)

Amplitude, a

Period

9 inches

9 inches

4.5 seconds

$$5x = 2\pi \quad \text{when}$$

$$4.55 = 2\pi$$

$$5 = \frac{2\pi}{45} = \frac{4\pi}{9}$$

22. • Question Details

LarTrig9 1.8.051. [2550721

A point on the end of a tuning fork moves in simple harmonic motion described by $d = a \sin \omega t$. Find ω given that the tunifork for a certain note has a frequency of 272 vibrations per second.

ω =

LarTrig9 1.8.054. [2456678]

For the simple harmonic motion described by the trigonometric function, find the maximum displacement, the frequency, the value of d when t = 6 and the least positive value of t for which d = 0. Use a graphing utility to verify your results.

$$d = \frac{1}{4} \cos \left(16\pi t \right)$$

