I think you know the drill on margins and legibility. I can't give points for what I can't read. Take a minute, at the end, to make sure your work is organized and submitted in proper order.

- 1. Let $f(x) = 3x^3 8x^2 + 19x 10$
 - a. (10 pts) Use synthetic division to find f(3).
 - b. (10 pts) Use synthetic division to show that x=1+2i is a solution of the equation f(x)=0.
 - c. (10 pts) Split f into linear factors, that is, factor f all the way.
- **2.** Let $z = 3\sqrt{6} 3\sqrt{6}i$
 - a. (10 pts) Find $z + \overline{z}$ and $z\overline{z}$, where \overline{z} is the complex conjugate of z.
 - b. (10 pts) Express z in trigonometric form.
- 3. Let $z = 16 \left(\cos \left(\frac{5\pi}{4} \right) + i \sin \left(\frac{5\pi}{4} \right) \right)$
 - a. (10 pts) Express z in standard form.
 - b. (10 pts) Find the principal 4th root of z, i.e., find $\sqrt[4]{z}$. Leave z in trigonometric form for this.
 - c. (10 pts) Now, find the *other* 4^{th} roots of z, in trigonometric form.
 - d. (10 pts) Find the trigonometric form of z^4 .
- **4.** (10 pts) Find all solutions $\theta \in [0, 2\pi)$ of the trig equation $4\sin^3(2\theta) + 12\sin^2(2\theta) 3\sin(2\theta) 9 = 0$. (Hint: If $f(x) = 4x^3 + 12x^2 3x 9$, then f(-3) = 0.)

Work up to 15 points' worth of bonus.

Bonus 1. Consider the triangle on the right.

- a. (5 pts) Prove that there are two possible solutions to this triangle.
- b. (5 pts) Use the Law of Sines to find the measure of angle *C* for the case where *B* is *acute*. (The case where *B* is obtuse is shown.) Give final answer accurate to 6 decimal places.

- c. (5 pts) Use the Law of Cosines and your answer from part b to find the length of side b. Give final answer accurate to 6 decimal places.
- **Bonus 2.** The vector \overline{u} has a magnitude of $\|\overline{u}\| = 60$ Newtons (N) and a direction angle $\theta = 45^{\circ}$. The vector \overline{v} has a magnitude of $\|\overline{v}\| = 50$ and a direction angle of $\phi = 120^{\circ}$.

- a. (5 pts) Draw a diagram that describes this situation.
- b. (5 pts) Express \overline{u} and \overline{v} in component form, in two ways: Give an exact answer, and an answer rounded to 3 decimal places.
- c. (5 pts) Find the resultant force.
- **Bonus 3.** (5 pts) Sketch the graph of $10\sin\left(\frac{\pi}{50}x \frac{7\pi}{50}\right) 11$
- **Bonus 4.** (5 pts) Find $\sin\left(\frac{u}{2}\right)$ and $\cos\left(\frac{u}{2}\right)$, given that $\cos(u) = \frac{3}{4}$ and $\sin(u) < 0$. Give exact answers in simplified radical form for full credit.
- **Bonus 5.** (5 pts) What quadrant does 2u lie in if $\cos(u) = \frac{3}{4}$ and $\sin(u) < 0$?
- **Bonus 6.** (5 pts) Find the cosine function that in one of its periods achieves a maximum at (7,100) and a minumum at (43,-200)