Test 3 - Fall, 2018

NO GRAPHING CALCULATORS!!!

Name

I think you know the drill on margins and legibility. I can't give points for what I can't read. Take a minute, at the end, to make sure your work is organized and submitted in proper order.

- 1. Consider the triangle in the figure. Assume lengths are in centimeters.
 - a. (10 pts) Use the Law of Cosines to find the length of side a, to 4 decimal places.
 - b. (10 pts) Use the Law of Sines to find angle C to 4 decimal places. A
- 2. Consider the directed line segment \overrightarrow{PQ} in the figure on the right. I want you to provide some basic facts about the vector \overline{u} :
 - a. (5 pts) Express the vector $\overline{u} = PQ$ in component form.
 - b. (5 pts) Compute the magnitude of \overline{u} . Leave your answer in simplified radical form.
 - c. (10 pts) Find the direction angle of \overline{u} . Use degrees, rounded to 4 places.
- 3. Let $\overline{u} = \langle 7, -6 \rangle$.
 - a. (5 pts) Express \overline{u} as a linear combination of the canonical (standard) unit vectors \overline{i} and \overline{j} .
 - b. (5 pts) What's another word for the sum of 2 vectors?
- 4. Dad's out walking his dog and his toddler. The dog pulls with 80 pounds of force in the direction of the vector \overline{u} . The toddler pulls with 20 pounds of pressure in the direction of the vector \overline{v} .
 - a. (10 pts) Express \overline{u} and \overline{v} in component form, in two ways: Give an exact answer, and an answer rounded to 3 decimal places.
 - b. (10 pts) What's the net force, as a vector, on poor Dad? Give an exact answer, and an answer rounded to 3 decimal places.
- 5. Consider the triangle in the figure on the right.
 - a. (10 pts) Prove there are 2 triangles that are possible from this ambiguous information.
 - b. (10 pts) Find the two possible values for Angle C. Round to 4 decimal places.

6. (10 pts) Find
$$\sin\left(\frac{u}{2}\right)$$
, $\cos\left(\frac{u}{2}\right)$ and $\tan\left(\frac{u}{2}\right)$, given that $\sin(u) = -\frac{5}{13}$ and

MAT 122

BONUS SECTION: Answer up to 4 questions for up to 20 bonus points.

- **B1** (5 pts) Build a cosine function that achieves its maximum height of y = 200 meters at time x = 7 seconds and its minimum height of y = -130 meters at x = 19 seconds.
- **B2** (5 pts) Find all solutions of the equation $\tan^2(3x) 3 = 0$ in the interval $[0, 2\pi)$.

B3 (5 pts) Sketch the graph of $-20\sin\left(\frac{7\pi}{22}x - \frac{14\pi}{11}\right) + 53$.

B4 Let $f(x) = 2x^3 - 15x^2 + 44x - 39$

- a. (5 pts) Use synthetic division to find f(2).
- b. (5 pts) Use synthetic division to show that x=3-2i is a solution of the equation f(x)=0.
- c. (5 pts) Find the linear factorization of f that is promised to us in the Fundamental Theorem of Algebra.

B5 Let $z = -1 + \sqrt{3}i$

- a. (5 pts) Find $z + \overline{z}$ and $z\overline{z}$, where \overline{z} is the complex conjugate of z.
- b. (5 pts) Express z in trigonometric form.

B6 Let $z = 8\left(\cos\left(\frac{7\pi}{4}\right) + i\sin\left(\frac{7\pi}{4}\right)\right)$

- a. (5 pts) Express z in standard form.
- b. (5 pts) Find the principal 4th root of z, i.e., find $\sqrt[4]{z}$. Leave z in trigonometric form for this.
- c. (5 pts) Now, find the *other* 4^{th} roots of *z*, in trigonometric form.
- d. (5 pts) Find the trigonometric form of z^2 .

B7 (5 pts) Finally, let $w = 3\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right)$, and find the trigonometric form of the product $z \cdot w$.

