10-point deduction for each of the following: Faint writing, Lack of margin, Problems out of order, Illegibile work. Work on the back of any page will receive zero points. Other than that, we're golden. :0)

- 1. We convert (x, y) = (-3, 2) to polar coordinates, (r, θ) .
 - a. (15 pts) Assume r > 0 and $\theta \in [0, 360^{\circ})$. Find the *exact* polar coordinates of the point. This may require leaving your answer with an 'arctan' in it. Use degrees for angle measures.

(5 pts) Name_

NO GRAPHING CALCULATORS!!!

- 2. (15 pts) Convert $(r, \theta) = \left(5, \frac{7\pi}{6}\right)$ to rectangular coordinates. Give an exact answer and a decimal answer, accurate to 4 decimal places.
- 3. (15 pts) Sketch the graph of $r = 5\cos(3\theta)$.

Check the function in #3 for symmetry.

- 4. Consider the triangle in the figure on the right. Lengths are in miles.
 - a. (10 pts) Show that this triangle has 2 solutions.
 - b. (10 pts) Find the *acute* angle *B*. Round final answer to 4 decimal places.

c. (10 pts) Find side *c*. Round final answer to 4 decimal places. Any numbers that you use in previous calculations should not be rounded. Always round at the end. Use the un-rounded *B* from part b, when you dive into the Law of Cosines, here.

Bonus 2 (5 pts) Find the *obtuse* version of angle *B*. Round final answer to 4 decimal places.

- 5. Let $f(x) = 2x^3 15x^2 + 44x 39$.
 - a. (5 pts) Use synthetic division to show that x = 3 + 2i is a solution of the equation f(x) = 0.
 - b. (5 pts) Find the linear factorization of f that is promised to us in the Fundamental Theorem of Algebra.
- 6. (15 points) Find the projection of \overline{u} onto \overline{v} , that is, find $\operatorname{proj}_{\overline{v}}\overline{u}$.
- **Bonus 1.** (10 pts) Build a *cosine* function that achieves its maximum height of y = 70 meters at time x = 3 seconds and its minimum height of y = -30 meters at x = 31 seconds.

Bonus 2. (10 pts) Find $\sin\left(\frac{u}{2}\right)$, $\cos\left(\frac{u}{2}\right)$ and $\tan\left(\frac{u}{2}\right)$, given that $\sin\left(u\right) = \frac{3}{7}$ and $\cos(u) < 0$.

Bonus 3. (5 pts) Check the function in #3 for symmetry.