\qquad

10-point deduction for each of the following: Faint writing, Lack of margin, Problems out of order, Illegibile work. Work on the back of any page will receive zero points. Other than that, we're golden. :o)

1. We convert $(x, y)=(-3,2)$ to polar coordinates, (r, θ).
a. (15 pts) Assume $r>0$ and $\theta \in\left[0,360^{\circ}\right)$. Find the exact polar coordinates of the point. This may require leaving your answer with an 'arctan' in it. Use degrees for angle measures.
2. (15 pts) Convert $(r, \theta)=\left(5, \frac{7 \pi}{6}\right)$ to rectangular coordinates. Give an exact answer and a decimal answer, accurate to 4 decimal places.
3. (15 pts) Sketch the graph of $r=5 \cos (3 \theta)$.

Check the function in \#3 for symmetry.
4. Consider the triangle in the figure on the right. Lengths are in miles.
a. (10 pts) Show that this triangle has 2 solutions.
b. (10 pts) Find the acute angle B. Round final answer to 4 decimal places.

c. (10 pts) Find side c. Round final answer to 4 decimal places. Any numbers that you use in previous calculations should not be rounded. Always round at the end. Use the un-rounded B from part b , when you dive into the Law of Cosines, here.

Bonus 2 (5 pts) Find the obtuse version of angle B. Round final answer to 4 decimal places.
5. Let $f(x)=2 x^{3}-15 x^{2}+44 x-39$.
a. (5 pts) Use synthetic division to show that $x=3+2 i$ is a solution of the equation $f(x)=0$.
b. (5 pts) Find the linear factorization of f that is promised to us in the Fundamental Theorem of Algebra.
6. (15 points) Find the projection of \bar{u} onto \bar{v}, that is, find $\operatorname{proj}_{\bar{v}} \bar{u}$.

Bonus 1. (10 pts) Build a cosine function that achieves its maximum height of $y=70$ meters at time $x=3$ seconds and its minimum height of $y=-30$ meters at $x=31$ seconds.

Bonus 2. (10 pts) Find $\sin \left(\frac{u}{2}\right), \cos \left(\frac{u}{2}\right)$ and $\tan \left(\frac{u}{2}\right)$, given that $\sin (u)=\frac{3}{7}$ and $\cos (u)<0$.
Bonus 3. (5 pts) Check the function in $\# 3$ for symmetry.

