\qquad

10-point deduction for each of the following: Faint writing, Lack of margin, Problems out of order, Illegibile work. Work on the back of any page will receive zero points. Other than that, we're golden. :o)

1. We convert $(x, y)=(4,-2)$ to polar coordinates, (r, θ).
a. (15 pts) Assume $r>0$ and $\theta \in\left[0,360^{\circ}\right)$. Find the exact polar coordinates of the point. This may require leaving your answer with an 'arctan' in it. Use degrees for angle measures.
2. (15 pts) Convert $(r, \theta)=\left(8, \frac{11 \pi}{6}\right)$ to rectangular coordinates. Give an exact answer and a decimal answer, accurate to 4 decimal places.
3. (15 pts) Sketch the graph of $r=7 \cos \theta$.
4. Consider the triangle in the figure on the right. Assume lengths are in miles.
a. (15 pts) Find Angle B. Round final answer to 4 decimal places.
b. (15 pts) Find side c. Round final answer to 4 decimal
 places.

Bonus 1. (5 pts) Find angle C. Round final answer to 4 decimal places.
5. Let $f(x)=3 x^{3}-10 x^{2}+31 x+26$.
a. (10 pts) Use synthetic division to show that $x=2+3 i$ is a solution of the equation $f(x)=0$.
b. (10 pts) Find the linear factorization of f that is promised to us in the Fundamental Theorem of Algebra.
6. (10 pts) Find $\sin \left(\frac{u}{2}\right), \cos \left(\frac{u}{2}\right)$ and $\tan \left(\frac{u}{2}\right)$, given that $\cos (u)=-\frac{3}{7}$ and $\sin (u)<0$.

MOAR Bonus Answer up to 3 of the following, for up to 30 bonus points.

Bonus 2. (10 pts) Find all solutions of the equation $2 \sin ^{2}(2 x)-1=0$ in the interval $[0,2 \pi)$.

Bonus 3. Let $z=16\left(\cos \left(\frac{7 \pi}{6}\right)+i \sin \left(\frac{7 \pi}{6}\right)\right)$.
a. (10 pts) Express z in standard form.
b. (10 pts) Find the principal 3 rd root of z, i.e., find $\sqrt[3]{z}$. Leave z in trigonometric form for this.
c. (10 pts) Now, find the other two $3^{\text {rd }}$ roots of z, in trigonometric form.
d. $(10 \mathrm{pts})$ Finally, let $w=2\left(\cos \left(\frac{\pi}{6}\right)+i \sin \left(\frac{\pi}{6}\right)\right)$, and find the trigonometric form of the product $z \cdot w$.

Bonus 4. (10 pts) Draw the sketch and use it to find an algebraic expression that is equivalent to $\cos (\arctan (3 x))$.

Bonus 5. (10 pts) Find the direction angle of \bar{u}, where \bar{u} is the vector corresponding to the directed line segment $\overrightarrow{P Q}$ in the figure on the right. Use degrees, rounded to 4 places.

Bonus 6. (10 pts) Build a cosine function that achieves its maximum height of $y=50$ meters at time $x=3$ seconds and its minimum height of $y=-30$ meters at $x=27$ seconds.

Bonus 7. (10 pts) Write $z=6-6 \sqrt{3} i$ in trigonometric form, rounded to 4 decimal places. Use an angle $\theta \in[0,2 \pi)$.

