I think you know the drill on margins and legibility. I can't give points for what I can't read. Take a minute, at the end, to make sure your work is organized and submitted in proper order.

- 1. Consider the triangle in the figure. Assume lengths are in centimeters.
 - a. (5 pts) Use the Law of Cosines to find the length of side a, to 4 decimal places.
 - b. (5 pts) Use the Law of Sines to find angle B to 4 decimal places.
- 2. Consider the directed line segment \overrightarrow{PQ} in the figure on the right. I want you to provide some basic facts about the vector \overline{u} :
 - a. (5 pts) Express the vector $\overline{u} = \overrightarrow{PQ}$ in component form.
 - b. (5 pts) Compute the magnitude of \overline{u} . Leave your answer in simplified radical form.
 - c. (5 pts) Find the direction angle of \overline{u} . Use degrees, rounded to 4 places.
- 3. Let $\overline{u} = \langle 3, -2 \rangle$.
 - a. (5 pts) Express \overline{u} as a linear combination of the canonical (standard) unit vectors \overline{i} and \overline{j} .
 - b. (5 pts) What's another word for the sum of 2 vectors?
- 4. The current in a river is flowing at 5 miles per hour, due North. $(\|\overline{u}\| = 5 \text{ mph})$. A man in a boat points his boat 30[°] upstream to attempt a crossing. His boat moves at 10 miles per hour $(\|\overline{v}\| = 10 \text{ mph})$.
 - a. (5 pts) Express \overline{u} and \overline{v} in component form.
 - b. (10 pts) What's the resulting direction and speed of his boat?
- 5. Let $f(x) = 2x^3 9x^2 + 14x 5$.
 - a. (5 pts) Use synthetic division to find f(2).
 - b. (5 pts) Use synthetic division to show that x = 2 + i is a solution of the equation f(x) = 0.
 - c. (5 pts) Find the linear factorization of f that is promised to us in the Fundamental Theorem of Algebra.

6. Let $z = -4 - 4\sqrt{3}i$

- a. (5 pts) Find $z + \overline{z}$ and $z\overline{z}$, where \overline{z} is the complex conjugate of z.
- b. (5 pts) Express z in trigonometric form.

NO GRAPHING CALCULATORS !!!

Name

Page 2

- 7. Let $z = 27\left(\cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right)\right)$.
 - a. (5 pts) Express z in standard form.
 - b. (5 pts) Find the principal 3^{rd} root of z, i.e., find $\sqrt[3]{z}$. Leave z in trigonometric form for this.
 - c. (5 pts) Now, find *all* the 3^{rd} roots of *z*, in trigonometric form.
 - d. (5 pts) Find the trigonometric form of z^2 .
 - e. (5 pts) Finally, let $w = 3\left(\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right)$, and find the trigonometric form of the product $z \cdot w$.

Answer as many as you have time for! Woo-Hoo!

- **B1** A potato cannon with a muzzle velocity of 70 meters per second is fired, with an angle of 22.5° from the horizontal.
 - a. (5 pts) Find the horizontal and vertical components of the potato, as it leaves the cannon, accurate to 4 decimal places.
 - b. (5 pts) Use a half-angle formula to find the *exact* value for the answer to the previous.

B2 (5 pts) Find
$$\sin\left(\frac{u}{2}\right)$$
, $\cos\left(\frac{u}{2}\right)$ and $\tan\left(\frac{u}{2}\right)$, given that $\cos(u) = \frac{2}{5}$ and $\sin(u) < 0$.

- **B3** (5 pts) Build a sine function that achieves its maximum height of y = 100 meters at time x = 9 seconds and its minimum height of y = -120 meters at x = 17 seconds.
- **B4** (5 pts) Find all solutions of the equation $4\cos^2(2x) 3 = 0$ in the interval $[0, 2\pi)$.
- **B5** (5 pts) Sketch the graph of $-3\sin\left(\frac{3\pi}{5}x 3\pi\right) + 11$.
- **B6** The triangle described has 2 possible solutions: Angle $A = 45^{\circ}$, side $b = 8\sqrt{2}$ and side a = 10.
 - a. (5 pts) Prove there are 2 possible triangles from this ambiguous information.
 - b. (5 pts) Find both triangles.

