1. Consider the triangle in the figure. All lengths are given in centimeters.

- a. (5 pts) Show that there are two possible triangles from the information given.
- b. (5 pts) Assume that *B* is acute. Use the Law of Sines to find the measure of Angle *B*. Round your final answer to 4 decimal places.
- c. (5 pts) Still assuming *B* is acute, use the Law of Cosines to find the length of side c. Round your final answer to 4 decimal places.

Name

NO GRAPHING CALCULATORS!!!

- 2. Consider the directed line segment PQ in the figure on the right. I want you to provide some basic facts about the vector \overline{u} :
 - a. (5 pts) Express the vector $\overline{u} = PQ$ in component form.
 - b. (5 pts) Compute the magnitude of \overline{u} . Leave your answer in simplified radical form.
 - c. (5 pts) Find the direction angle of \overline{u} . Use degrees, rounded to 4 places.
- 3. Let $\bar{u} = \langle -3,7 \rangle$.
 - a. (5 pts) Express \overline{u} as a linear combination of the canonical (standard) unit vectors \overline{i} and j.
 - b. (5 pts) What's another word for the sum of 2 vectors?
- 4. Forces with magnitudes $\|\vec{u}\| = 90$ N and $\|\vec{v}\| = 60$ N are acting on a hook, as shown in the figure.
 - a. (5 pts) Express \overline{u} and \overline{v} in component form.
 - b. (5 pts) Express the resultant force, in component form.
 - c. (5 pts) Find the direction angle of the resultant force, in degrees, rounded to 4 decimal places.

5. Let $f(x) = 5x^3 - 23x^2 + 77x - 39$.

- a. (5 pts) Use synthetic division to find f(2).
- b. (5 pts) Use synthetic division to show that x = 2 + 3i is a solution of the equation f(x) = 0.
- c. (5 pts) Find the linear factorization of f that is promised to us by the Fundamental Theorem of Algebra (, i.e., the Math gods.)
- 6. Let z = -9 12i
 - a. (5 pts) Find $z + \overline{z}$ and $z\overline{z}$, where \overline{z} is the complex conjugate of z.
 - b. (5 pts) Express z in trigonometric form. Use degrees, and round the angle to the nearest degree.

MAT 122

Page 2

7. Let

a. (5 pts) Express z in standard form.

 $z = 1 \left(\cos\left(\frac{5\pi}{3}\right) + i\sin\left(\frac{5\pi}{3}\right) \right)$

- b. (5 pts) Find the principal 5th root of z, i.e., find $\sqrt[5]{z}$, in trigonometric form.
- c. (5 pts) Now, find *all* the 5^{th} roots of z, in trigonometric form.
- d. (5 pts) Find the trigonometric form of $z_{4\pi}^3$ $w = 5 \left| \cos \left(\frac{4\pi}{7} \right) + i \sin \left(\frac{4\pi}{7} \right) \right|$
- e. (5 pts) Finally, let $(cos(7)^{+1})$, and find the trigonometric form of the product $z \cdot w$.

Answer up to as many as 20 points' worth.

B6 (5 pts) Sketch the

B1 (5 pts) Find the area of the triangle in the 1^{st} problem.

- **B2** A cannon with a muzzle velocity of 500 meters per second is fired, with an angle of 22.5° from the horizontal.
 - a. (5 pts) Find the horizontal and vertical components of the shell, as it leaves the muzzle, accurate to the nearest meter.
 - b. (5 pts) Use a half-angle formula to find the *exact* value for the answer to the previous.
 - c. (5 pts) Using 9.8 $\overline{s^2}$ for the acceleration due to gravity, and neglecting air

friction, predict where and when the bullet will hit the ground, in the gun question.

B3 (5 pts) Find $\sin(2u)$, $\cos(2u)$ and $\tan(2u)$, given that $\cos(u) = -\frac{2}{5}$ and $\sin(u) > 0$.

Use the 1st two answers to *build* the 3rd. It's *silly* to go back to your cheat sheet and deal with the mess.

- **B4** (5 pts) Build a **cosine** function that achieves its maximum height of y = 500 meters at time x = 7 seconds and its minimum height of y = -8 meters at x = 13 seconds.
- **B5** (5 pts) Find all solutions of the equation $2\sin^2(3x)-1=0$ in the interval $[0,2\pi)$.

graph of
$$f(x) = 500 \sin\left(\frac{\pi}{14}x - \frac{13\pi}{14}\right) + 300$$

