\qquad

I think you know the drill on margins and legibility. I can't give points for what I can't read. Take a minute, at the end, to make sure your work is organized and submitted in proper order.

1. We convert $(x, y)=(3,-5)$ to polar coordinates, (r, θ).
a. (10 pts) Assume $r>0$ and $\theta \in\left[0,360^{\circ}\right]$. Find the exact polar coordinates of the point. Use degrees for angle measures.
b. (10 pts) Approximate your answer in part a, with 4-decimal-place accuracy.
2. (10 pts) Convert $(r, \theta)=\left(3,-\frac{2 \pi}{3}\right)$ to rectangular coordinates. Give an exact answer and decimal answer, accurate to 4 decimal places.
3. (10 pts) Sketch the graph of $r=8 \cos \theta$.
4. Consider the triangle in the figure. Assume lengths are in miles
a. (10 pts) Use the Law of Cosines to find the length of side c in the triangle illustrated on the right. Round your final answer to 4 decimal places, but keep the un-rounded number in your calculator for the next question.

b. (10 pts) Use the Law of Sines to find the measure of angle A, in degrees. (Nice, clean answer, for a change!)
5. Consider the directed line segment $\overrightarrow{P Q}$ in the figure on the right. I want you to provide some basic facts about the vector \bar{u} :
a. (10 pts) Express the vector $\bar{u}=\overrightarrow{P Q}$ in component form.
b. (10 pts) Compute the magnitude of \bar{u}. Leave your answer in simplified radical form.
c. (10 pts) Express \bar{u} as a linear combination of the canonical (standard) unit
 vectors \bar{i} and \bar{j}.
d. (10 pts) Find the direction angle of \bar{u}. Use degrees, rounded to 4 places.
6. Let $f(x)=5 x^{3}-22 x^{2}+33 x-10$.
a. (10 pts) Use synthetic division to show that $x=2+i$ is a solution of the equation $f(x)=0$.
b. (10 pts) Find the linear factorization of f that is promised to us in the Fundamental Theorem of Algebra.
7. (10 pts) Express $z=-\sqrt{3}-i$ in trigonometric form.
8. Let $z=27\left(\cos \left(\frac{3 \pi}{4}\right)+i \sin \left(\frac{3 \pi}{4}\right)\right)$.
a. (10 pts) Express z in standard form.
b. (10 pts) Find the principal $3^{\text {rd }}$ root of z, i.e., find $\sqrt[3]{z}$. Leave z in trigonometric form for this.
c. (10 pts) Now, find the other pair of $3^{\text {rd }}$ roots of z, in trigonometric form.
d. $\quad(10 \mathrm{pts})$ Finally, let $w=2\left(\cos \left(\frac{\pi}{6}\right)+i \sin \left(\frac{\pi}{6}\right)\right)$, and find the trigonometric form of the product $z \cdot w$.
9. (10 pts) Find $\sin (2 u), \cos (2 u)$ and $\tan (2 u)$, given that $\cos (u)=-\frac{3}{11}$ and $\sin (u)<0$.
10. (10 pts) Find $\sin \left(\frac{u}{2}\right), \cos \left(\frac{u}{2}\right)$ and $\tan \left(\frac{u}{2}\right)$, given that $\cos (u)=-\frac{3}{11}$ and $\sin (u)<0$.
11. (10 pts) Build a sine function that achieves its maximum height of $y=95$ meters at time $x=10$ seconds and its minimum height of $y=15$ meters at $x=18$ seconds.

Bonus Section

Bonus 1. (10 pts) Find all solutions of the equation $2 \sin (2 x)-1=0$ in the interval $[0,2 \pi)$.
Bonus 2. (10 pts) Sketch the graph of $f(\theta)=11 \sin \left(\frac{\pi}{14} \theta-\frac{26 \pi}{7}\right)+4$.
Bonus 3. Consider the triangle described by the following (See figure):
Angle $A=60^{\circ}$, side $b=15$ and side $a=14$.
a. (5 pts) Prove that there are two triangles fitting this description.
b. (5 pts) Find both possible values of angle B.

Bonus 4. (10 pts) Find the exact value of side c of the triangle in problem

