- 4.1 Complex Numbers
- 4.2 Complex Solutions of Equations
- 4.3 The Complex Plane
- 4.4 Trigonometric Form of Complex Numbers
- 4.5 DeMoivre's Theorem
 - 1. Simplify the products and quotients.
 - a. (5 pts) (3+2i)(5-7i)
 - b. (5 pts) (3+2i)(3-2i)
 - c. (5 pts) $\frac{3+2i}{3-2i}$
 - d. (5 pts) $\left(5\left(\cos\left(\frac{2\pi}{3}\right)+i\sin\left(\frac{2\pi}{3}\right)\right)\right)\left(7\left(\cos\left(\frac{\pi}{4}\right)+i\sin\left(\frac{\pi}{4}\right)\right)\right)$
 - 2. Let $f(x) = x^4 + 2x^3 18x^2 + 106x 91$
 - a. (5 pts) Use the fact that 2-3i is a zero of f(x) to find all the zeros of f without using a graph.
 - b. (5 pts) Graph f(x). Include all intercepts in your graph. Do not graph with a graphing utility. Include only the features your work suggests. Assume f is nice and smooth, and that's it.
 - 3. (5 pts) Use DeMoivre's Theorem to generate the five zeros of $f(x) = x^5 32$ in trigonometric form. Then approximate your answers to 3 decimal places.
 - 4. Use DeMoivre's Theorem to generate the 3rd roots of $z = 1 \sqrt{3}i$ in two main steps:
 - a. (5 pts) Write z in trigonometric form.
 - b. (5 pts) Write the 3 roots in trigonometric form. Give exact answers. Express all arguments in radians.
 - c. (Bonus 5 pts) Draw a very neat sketch showing z and its 3^{rd} roots.
 - 5. (Bonus 5 pts) Show that the parametric equations $x = 4\cos(t)$, $y = 3\sin(t)$ describe an ellipse.