\qquad

Use the blank paper provided for all your work and answers.
Leave 1-inch margin top, bottom, left and right.
Write big. Write dark.
Show all work.
Circle final answers.

1. Arc Length and Area of Sector. Suppose we have a circle of radius $r=7$.
a. (5 pts) Find the arc length on the circle, that is intercepted by an angle of 1220°. Round to 3 decimal places.
b. (5 pts) Find the exact area of the sector that is intercepted (swept through) by an angle of $\theta=\frac{7 \pi}{6}$
2. Answer the questions about the equation $\sin (\theta)=\frac{2}{3}$.
a. (5 points) Sketch two triangles that satisfy $\sin (\theta)=\frac{2}{3}$.
b. (5 pts) Assume the terminal side of the angle θ lies in the $2^{\text {nd }}$ quadrant. Find the other five trigonometric functions of θ.
c. (5 pts) Again, assuming θ 's terminal side lies in Q II, and $0 \leq \theta<2 \pi$, find θ, in radians and degrees, rounded to 3 decimal places.
d. (5 pts) Give all solutions to the equation $\sin (\theta)=\frac{2}{3}$, in degrees and radians, rounded to three (3) decimal places.
3. (5 pts) Sketch one period of the graphs of $y=\sin (x)$ and $y=\csc (x)$ on the same set of coordinate axes.
4. The radii of the pedal sprocket, the wheel sprocket, and the wheel of the bicycle in the figure are 5 inches, 2 inches and 15 inches, respectively. A cyclist is pedaling at a rate of 1.4 revolutions per second.
a. (5 pts) Find the speed of the bicycle in feet per second.
b. (5 pts) Convert your answer, above, to miles per hour. Round final answers to 1 decimal place.

5. (5 pts) Sketch the graph of $f(x)=2 \cos \left(\frac{\pi}{4} x+\frac{7 \pi}{4}\right)+5$.
6. (5 pts) Write the cosine function that achieves its maximum height of $y=23$ centimeters at time $t=6$ seconds and its minimum height of $y=-5$ centimeters at $t=30$ seconds.
7. (5 pts) Solve the triangle in the figure on the right. That means, find all lengths and angles. Exact answers required.
8. (5 pts) Find the exact value of $\arctan \left(\sin \left(\frac{3 \pi}{2}\right)\right)$

9. (5 pts) Find $\sin \left(\frac{u}{2}\right), \cos \left(\frac{u}{2}\right)$, and $\tan \left(\frac{u}{2}\right)$, given that $\sin (u)=-\frac{2}{3}$ and $\pi \leq u<\frac{3 \pi}{2}$.
10. Consider the equation $4 \sin ^{2}(x)-3=0$.
a. (5 pts) Find all solutions x, in radians and degrees, to the equation in the interval $[0,2 \pi)$.
b. (5 pts) Find all real solutions x, in radians and degrees.
11. (5 pts) Draw the picture and use it to re-write $\sin \left(\cos ^{-1}\left(\frac{2}{x}\right)\right)$ as an algebraic expression.
12. Find the exact value of $\cos \left(\frac{5 \pi}{12}\right)$ in two ways: (Hint: If degrees are easier for you, use degrees.)
a. (5 pts) Use a Sum identity.
b. (5 pts) Use a Half-Angle identity
13. (5 pts) Find $\sin (2 u), \cos (2 u)$ and $\tan (2 u)$, given that $\cos (u)=\frac{4}{11}$ and $\sin (u)<0$.
14. BONUS (5 pts) Re-write $\cos (\arcsin (x)+\arccos (x))$ as an algebraic expression. (Hint: Use Sum identity.)
