Ray Brown

HOR 103 between 7 am and 8 pm. Midterm over Chapters 1 & 2. Give yourself 2 hours. One sided one page cheat sheet permitted.

Cheat Sheet Link

- 1. Arc Length and Area of Sector. Suppose we have a circle of radius r = 10.
 - a. (5 pts) Find the arc length on the circle, that is intercepted by an angle of 1317°. Round to 3 decimal places.
 - b. (5 pts) Find the *exact* area of the sector that is intercepted (swept through) by an angle of $\theta = \frac{3\pi}{4}$

(a)
$$S = r\Theta = (10)(1317^{\circ})(\frac{11}{180^{\circ}}) = \frac{13177}{10} = \frac{13977}{10} = \frac{1$$

(b)
$$A = \frac{1}{2}r^2\Theta = \frac{1}{2}(10^2)(\frac{317}{4}) = \frac{1}{2}(25)(37) = \frac{1}{1507}$$
 um $\frac{1}{4}s^2$

- 2. Answer the questions about the equation $\tan(\theta) = \frac{3}{4}$.
 - a. (5 points) Sketch two triangles that satisfy $\tan(\theta) = \frac{5}{4}$.

(5 pts) Assume the terminal side of the angle θ lies in the 3rd quadrant. Find the other five trigonometric functions of θ

$$\cos \theta = \frac{3}{\sqrt{4}}$$

$$\cos \theta = \frac{4}{\sqrt{4}}$$

$$\cos \theta = \frac{4}{\sqrt{4}}$$

$$\sin \theta = \frac{3}{\sqrt{4}}$$

$$\sin \theta = \frac{3}{$$

c. (5 pts) Again, assuming θ 's terminal side lies in Q III, and $0 \le \theta < 2\pi$, find θ , in radians and degrees,

d. (5 pts) Give *all* solutions to the equation $\tan(\theta) = \frac{5}{4}$, in degrees *and* radians, rounded to three (3) decimal places.

3. (5 pts) Sketch one period of the graphs of $y = \sin(x)$ and $y = \csc(x)$ on the same set of coordinate axes.

4. The radii of the pedal sprocket, the wheel sprocket, and the wheel of the bicycle in the figure are 6 inches, 2 inches and 26 inches, respectively. A cyclist is pedaling at a rate of 1.5 revolutions per second.

- a. (5 pts) Find the speed of the bicycle in feet per second.
- b. (5 pts) Convert your answer, above, to miles per hour. Round final answers to 1 decimal place.

$$\left(\frac{91 \text{ Tf}}{45 \text{ sec}}\right) \left(\frac{60 \text{ mob}}{88 \text{ sec}}\right) = e^{+c}.$$

6. (5 pts) Write the cosine function that achieves its maximum height of y = 11 centimeters at time t = 18 seconds and its minimum height of y = -4 centimeters at t = 30 seconds.

13

7. (5 pts) Solve the triangle in the figure on the right. That means, find all lengths and angles. Exact answers required.

$$\frac{13}{13} = 44 \cdot 30^{3} = \frac{1}{2}$$

$$\frac{13}{2} = + 20^\circ = \frac{1}{\sqrt{3}}$$

= 54(0)

9. (5 pts) Draw the sketch and use it to find an algebraic expression that is equivalent to $\sin(\arctan(3x))$.

10. (5 pts) Find the values of all six trigonometric functions, given $\tan(u) = \frac{2}{3}$ and $\sin(u) < 0$.

11. (5 pts) Find $\sin\left(\frac{u}{2}\right)$, $\cos\left(\frac{u}{2}\right)$, and $\tan\left(\frac{u}{2}\right)$, given that $\cos(u) = \frac{3}{4}$ and $\frac{3\pi}{2} < u < 2\pi$

$$\frac{3\pi}{2} \leq \ln 2\pi T$$

$$\frac{3\pi$$

- 12. Consider the equation $2\sin^2(x) 1 = 0$.
 - a. (5 pts) Find all solutions x, in radians and degrees, to the equation in the interval $[0,2\pi)$.
 - b. (5 pts) Find all real solutions x, in radians and degrees.

13. (5 pts) Re-write $\sin \left(\cos^{-1}\left(\frac{2}{x}\right)\right)$ as an algebraic expression.

- 14. Find the exact value of $\sin\left(\frac{5\pi}{6}\right)$ in two ways: (Hint: If degrees are easier for you, use degrees.)
 - a. (5 pts) Use a Sum identity.
 - b. (5 pts) Use a Half-Angle identity

$$\frac{1}{3} \frac{1}{2\sqrt{3}} = \frac{1}{6} \cdot \frac{1}{2} + \frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}}$$

$$= \frac{1}{6} \cdot \frac{1}{2} + \frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}}$$

$$= \frac{1}{6} \cdot \frac{1}{2} + \frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}}$$

$$\sin \frac{u}{2} = + \sqrt{\frac{1-\cos(u)}{2}}$$
 eta

Bonus on midterm.

15. (5 pts) Re-write $\cos(\arcsin(x) + \arccos(x))$ as an algebraic expression. (Hint: Use Sum identity.) $= \cos(u+v) = \cos(u) \cos(v) - \sin(u) \sin(v)$ $= \cos(\arcsin(x)) \cos(\arccos(x)) - \sin(\arcsin(x)) (\sin(\arccos(x)))$

