In the end, he used technology.

Consider the following.

er the following.

$$(8 + 8i)(5 - 5i) = 40(1+i)(1-i) = 40(1^2+1^2) = 80$$

- (a) Write the trigonometric forms of the complex numbers. (Let 0 $\leq \theta < 2\pi$.)
- (b) Perform the indicated operation using the trigonometric forms. (Let 0 \leq θ < 2π .)
- (c) Perform the indicated operation using the standard forms, and check your result with that of part (b).

8+8i 8 8 8 8 8 (
$$\omega s = +isi = 21$$
) = 21
8 5 $(\omega s = +isi = 21)$ = 22.
5-5i $= 2\pi = 40.2 (\cos 2\pi + isi = 21\pi)$ = 80 ($1+2i$) = 80

Consider the following.

$$\frac{6+8i}{1-\sqrt{3}i} = \frac{21}{22}$$
 4.3 #19

- (a) Write the trigonometric forms of the complex numbers. (Let $0 \le \theta < 2\pi$. Round your angles to three decimal places.)
- (b) Perform the indicated operation using the trigonometric forms. (Let $0 \le \theta < 2\pi$. Round your angles to three decimal places.)
- (c) Perform the indicated operation using the standard forms, and check your result with that of part (b). (Round all

$$\frac{1}{\sqrt{100}} = 4 \left(2 \left(\cos \frac{\pi}{10} \right) + i \sin \frac{\pi}{10} \right) = 4 \left(2 \left(\cos \frac{\pi}{10} \right) + i \sin \frac{\pi}{10} \right) = 4 \left(-\frac{1}{2} + i \right) \left(-\frac{1}{2} + i \right) = 4 \left(-\frac{1}{2$$