Do all your work and submit answers with your work, on separate paper. Organize your work for efficient grading and feedback. Leave a margin, especially in the top left, where the staple goes!

FORMATTING: This is semi-formal writing, here. That means show some professionalism. You don't have to type it out, but you do need to be very clear.

- 1. Write on only one side of each page. I will not award (or deduct) points for anything on the backs of pages.
- 2. Plain white paper without lines (8 ½ x 11-inch A4 copier paper works just fine). Paper with lines:
- 3. Staple top left corner. Do NOT staple over problem numbers or any of your work. If I can't see it, you didn't do it.
- 4. Leave margins. "MAT 122" in big letters in top left corner of every page solves all problems with margins. We
- 5. Write DARK. I don't mind if you use pen. Just put a line through mistakes. Pencil's good, but make sure you're getting it DARK, i.e., BLACK, with a white background.
- 6. Leave ROOM between problems and between steps on your work. I have bad eyes, so being stingy with space and paper is a mistake on Writing Projects. **Don't do work in 2 columns!**

For early feedback, make a black-and-white, multi-page PDF and upload it to the D2L drop-box for Writing Project #3. Otherwise, mail your neat, clear, black-and-white, one-side-of-each-page work to me at:

Harry Mills EDBH 134K Aims Community College 5401 West 20<sup>th</sup> Street Greeley, CO 80634

Alternatively, you may just slide it under my office door in Ed Beaty by or before the deadline: EDBH 134K

## Mail, E-Mail, or drop off your Writing Project 2 by or before Wednesday, March 30<sup>th</sup>. Late work accepted as late as Thursday, April 3<sup>rd</sup>, at a 20% discount.

- 1. Consider the triangle in the figure. Assume lengths are in centimeters.
  - a. (5 pts) Use the Law of Cosines to find the length of side **a**.
  - b. (5 pts) Use the Law of Sines to find angles B and C.
- 2. Consider the directed line segment  $\overrightarrow{PQ}$  in the figure on the right. I want you to provide some basic facts about the vector  $\overline{u}$ :
  - a. (5 pts) Express the vector  $\overline{u} = \overrightarrow{PQ}$  in component form.
  - b. (5 pts) Compute the magnitude of  $\overline{u}$ . Leave your answer in simplified radical form.
  - c. (5 pts) Find the direction angle of  $\overline{u}$ . Use degrees, rounded to 4 places.



## 3. Let $\overline{u} = \langle 4, 5 \rangle$ .

a. (5 pts) Express  $\overline{u}$  as a linear combination of the canonical (standard) unit vectors  $\overline{i}$  and  $\overline{j}$ .

- b. (5 pts) What's another word for the sum of 2 vectors?
- 4. Forces with magnitudes  $\|\overline{u}\| = 90$  N and  $\|\overline{v}\| = 25\sqrt{2}$  N are acting on a hook, as shown in the figure.
  - a. (5 pts) Express  $\overline{u}$  and  $\overline{v}$  in component form.
  - b. (5 pts) Express the resultant force in component form.
  - c. (5 pts) Find the direction angle of the resultant force, in degrees, rounded to 4 decimal places.
- 5. (5 pts) Find the area of the triangle in the  $1^{st}$  problem.
- 6. A gun with a muzzle velocity of 370 meters per second is fired, with an angle of  $15^{\circ}$  from the horizontal.
  - a. (5 pts) Find the horizontal and vertical components of the bullet, as it leaves the muzzle, accurate to 4 decimal places.
  - b. (5 pts) Use a half-angle formula to find the *exact* value for the answer to the previous.
  - c. (5 pts) Using 9.8  $\frac{m}{s^2}$  for the acceleration due to gravity, and neglecting air friction, predict where and when the bullet will hit the ground, in the gun question. Round your answer to 2 decimal place
  - d. (5 pts) Find  $\sin(2u)$ ,  $\cos(2u)$  and  $\tan(2u)$ , given that  $\cos(u) = \frac{2}{5}$  and  $\sin(u) < 0$ .
- 7. (5 pts) Build a cosine function that achieves its maximum height of y = 62 meters at time x = 5 seconds and its minimum height of y = -8 meters at x = 13 seconds.
- 8. (5 pts) Find all solutions of the equation  $2\sin^2(3x)-1=0$  in the interval  $[0,2\pi)$ . Exact answers in  $\pi$  radians, only.
- 9. (5 pts) Sketch the graph of  $4\sin\left(\frac{2\pi}{7}x \frac{26\pi}{7}\right) 11$ .
- 10. The triangle described has 2 possible solutions:

Angle  $A = 30^{\circ}$ , side b = 8 and side a = 5.

- a. (5 pts) Prove there are 2 possible triangles from this ambiguous information.
- b. (5 pts) Find both triangles. Round final answers to 3 places.
- c. (5 pts) Use your work to find the area of both triangles. Round final answer to 3 places.



