with(plots) :
$\begin{aligned} \text { pointplot }(& {\left[\left[2^{\frac{1}{10}} \cos \left(\frac{7 \cdot \mathrm{Pi}}{20}\right), 2^{\frac{1}{10}} \sin \left(\frac{7 \cdot \mathrm{Pi}}{20}\right)\right],\left[2^{\frac{1}{10}} \cos \left(\frac{3 \cdot \mathrm{Pi}}{4}\right), 2^{\frac{1}{10}} \sin \left(\frac{3 \cdot \mathrm{Pi}}{4}\right)\right],\right.} \\ & {\left[2^{\frac{1}{10}} \cos \left(\frac{23 \cdot \mathrm{Pi}}{20}\right), 2^{\frac{1}{10}} \sin \left(\frac{23 \cdot \mathrm{Pi}}{20}\right)\right],\left[2^{\frac{1}{10}} \cos \left(\frac{31 \cdot \mathrm{Pi}}{20}\right), 2^{\frac{1}{10}} \sin \left(\frac{31 \cdot \mathrm{Pi}}{20}\right)\right], } \\ & {\left.\left[2^{\frac{1}{10}} \cos \left(\frac{39 \cdot \mathrm{Pi}}{20}\right), 2^{\frac{1}{10}} \sin \left(\frac{39 \cdot \mathrm{Pi}}{20}\right)\right],\left[\operatorname{sqrt}(2) \cdot \cos \left(\frac{7 \mathrm{Pi}}{4}\right), \operatorname{sqrt}(2) \cdot \sin \left(\frac{7 \mathrm{Pi}}{4}\right)\right]\right] \text {, symbol } }\end{aligned}$ $=$ solidcircle, , , mbolsize $=20$

$\operatorname{evalf}\left(2^{\frac{1}{10}}\right)$

$$
1.071773463
$$

$\operatorname{evalf}\left(2^{\frac{1}{2}}\right)$

$$
1.414213562
$$

Let's do this with a similar complex number, but one that's got greater length, so the length difference between z and its roots will be more pronounced. The original question had an absolute value (or modulus) of $\sqrt{2}$. Here's the same one, but with a modulus of $\sqrt{10}$. The point in the lower right corner is z and all the other points are the 5th roots of z.

$$
\begin{gathered}
\text { pointplot }\left(\left[\left[10^{\frac{1}{10}} \cos \left(\frac{7 \cdot \mathrm{Pi}}{20}\right), 10^{\frac{1}{10}} \sin \left(\frac{7 \cdot \mathrm{Pi}}{20}\right)\right],\left[10^{\frac{1}{10}} \cos \left(\frac{3 \cdot \mathrm{Pi}}{4}\right), 10^{\frac{1}{10}} \sin \left(\frac{3 \cdot \mathrm{Pi}}{4}\right)\right],\right.\right. \\
{\left[10^{\frac{1}{10}} \cos \left(\frac{23 \cdot \mathrm{Pi}}{20}\right), 10^{\frac{1}{10}} \sin \left(\frac{23 \cdot \mathrm{Pi}}{20}\right)\right],\left[10^{\frac{1}{10}} \cos \left(\frac{31 \cdot \mathrm{Pi}}{20}\right), 10^{\frac{1}{10}} \sin \left(\frac{31 \cdot \mathrm{Pi}}{20}\right)\right],}
\end{gathered}
$$

$$
\left.\left[10^{\frac{1}{10}} \cos \left(\frac{39 \cdot \mathrm{Pi}}{20}\right), 10^{\frac{1}{10}} \sin \left(\frac{39 \cdot \mathrm{Pi}}{20}\right)\right],\left[\operatorname{sqrt}(10) \cdot \cos \left(\frac{7 \mathrm{Pi}}{4}\right), \operatorname{sqrt}(10) \cdot \sin \left(\frac{7 \mathrm{Pi}}{4}\right)\right]\right], \text { symbol }
$$

$$
=\text { solidcircle, symbolsize }=20)
$$

