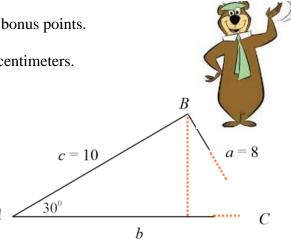
I think you know the drill on margins and legibility. I can't give points for what I can't read. Take a minute, at the end, to make sure your work is organized and submitted in proper order.

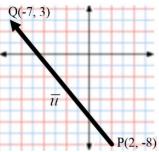
- 1. Let $f(x) = x^3 7x^2 + 25x 39$
 - a. (10 pts) Use synthetic division to find f(-3).
 - b. (10 pts) Use synthetic division to show that x = 2 + 3i is a solution of the equation f(x) = 0.
 - c. (10 pts) Find the linear factorization of f that is promised to us in the Fundamental Theorem of Algebra.
- 2. Let $z = -3 + 3\sqrt{3}i$
 - a. (10 pts) Find $z + \overline{z}$ and $z\overline{z}$, where \overline{z} is the complex conjugate of z.
 - b. (10 pts) Express z in trigonometric form.


3. Let
$$z = 8\left(\cos\left(\frac{5\pi}{3}\right) + i\sin\left(\frac{5\pi}{3}\right)\right)$$
.

- a. (10 pts) Express z in standard form.
- b. (10 pts) Find the principal 3^{rd} root of z, i.e., find $\sqrt[3]{z}$. Leave z in trigonometric form for this.
- c. (10 pts) Now, find the *other* 3^{rd} roots of *z*, in trigonometric form.
- d. (10 pts) Find the trigonometric form of z^2 .
- e. (10 pts) Finally, let $w = 3\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right)$, and find the trigonometric form of the product $z \cdot w$.

Bonus Section: Answer up to three (3) 5-pointers for up to 15 bonus points.

B1 Consider the triangle in the figure. Assume lengths are in centimeters.


- a. (5 pts) Show that there are 2 possible triangles from this information.
- b. (5 pts) Use the law of sines to find *one* of the possible values of angle *C*. Round your result to 4 decimal places. Then find the *other* possible value, rounded to 4 decimal places.

B2 (5 pts) Consider the directed line segment $\overline{u} = \overrightarrow{PQ}$ in the figure on the right. Find the direction angle of \overline{u} . Use degrees, rounded to 4 places.

B3 (5 pts) Find
$$\sin\left(\frac{u}{2}\right)$$
, $\cos\left(\frac{u}{2}\right)$ and $\tan\left(\frac{u}{2}\right)$, given that $\tan(u) = \frac{2}{5}$ and $\sin(u) < 0$.

- **B4** (5 pts) Build a sine function that achieves its maximum height of y = 120meters at time x = 3 seconds and its minimum height of y = -100 meters at x = 15 seconds.
- **B5** (5 pts) Find all solutions of the equation $4\sin^2(2x)-1=0$ in the interval $[0,2\pi)$.

