\qquad

I think you know the drill on margins and legibility. I can't give points for what I can't read. Take a minute, at the end, to make sure your work is organized and submitted in proper order.

1. Let $f(x)=x^{3}-7 x^{2}+25 x-39$
a. (10 pts) Use synthetic division to find $f(-3)$.
b. (10 pts) Use synthetic division to show that $x=2+3 i$ is a solution of the equation $f(x)=0$.
c. (10 pts) Find the linear factorization of f that is promised to us in the Fundamental Theorem of Algebra.
2. Let $z=-3+3 \sqrt{3} i$
a. (10 pts) Find $z+\bar{z}$ and $z \bar{z}$, where \bar{z} is the complex conjugate of z.
b. (10 pts) Express z in trigonometric form.
3. Let $z=8\left(\cos \left(\frac{5 \pi}{3}\right)+i \sin \left(\frac{5 \pi}{3}\right)\right)$.
a. (10 pts) Express z in standard form.
b. (10 pts) Find the principal $3^{\text {rd }}$ root of z, i.e., find $\sqrt[3]{z}$. Leave z in trigonometric form for this.
c. (10 pts) Now, find the other $3^{\text {rd }}$ roots of z, in trigonometric form.
d. (10 pts) Find the trigonometric form of z^{2}.
e. (10 pts) Finally, let $w=3\left(\cos \left(\frac{\pi}{4}\right)+i \sin \left(\frac{\pi}{4}\right)\right)$, and find the trigonometric form of the product $z \cdot w$.

Bonus Section: Answer up to three (3) 5-pointers for up to 15 bonus points.
B1 Consider the triangle in the figure. Assume lengths are in centimeters.
a. (5 pts) Show that there are 2 possible triangles from this information.
b. (5 pts) Use the law of sines to find one of the possible values of angle C. Round your result to 4 decimal places. Then find the other possible value, rounded to 4 decimal places.

B2 (5 pts) Consider the directed line segment $\bar{u}=\overrightarrow{P Q}$ in the figure on the right.
Find the direction angle of \bar{u}. Use degrees, rounded to 4 places.

B3 (5 pts) Find $\sin \left(\frac{u}{2}\right), \cos \left(\frac{u}{2}\right)$ and $\tan \left(\frac{u}{2}\right)$, given that $\tan (u)=\frac{2}{5}$ and $\sin (u)<0$.

B4 (5 pts) Build a sine function that achieves its maximum height of $y=120$
 meters at time $x=3$ seconds and its minimum height of $y=-100$ meters at $x=15$ seconds.

B5 (5 pts) Find all solutions of the equation $4 \sin ^{2}(2 x)-1=0$ in the interval $[0,2 \pi)$.

