\qquad

1. (10 pts) Find the values of all six trigonometric functions, given $\sec (\theta)=4$ and $\sin (\theta)<0$.
2. Consider the equation $2 \sin ^{2}(x)-\sin (x)-1=0$.
a. (10 pts) Find all solutions x, in radians and degrees, to the equation in the interval $[0,2 \pi]$.
b. (10 pts) Find all real solutions x, in radians and degrees.

It may be easier for you to use degrees to solve and then convert to radians at the end.
3. Consider the equation $2 \sin ^{2}(2 x)-\sin (2 x)-1=0$. (Use your answer from \#2, right or wrong.)
a. (10 pts) Find all solutions x to the equation in the interval $[0,2 \pi]$. (Do degrees and radians in final answer.)
b. (5 pts) Find all real solutions x, in degrees and radians.
4. (10 pts) Re-write $\tan \left(\sec ^{-1}\left(\frac{3}{x}\right)\right)$ as an algebraic expression.
5. (5 pts) Square both sides of $\sin (x)+1=\cos (x)$ and solve. Find all solutions in $[0,2 \pi]$. Give answer in degrees and radians.
6. Find the exact value of $\cos \left(\frac{17 \pi}{12}\right)$ in two ways: (Hint: If degrees are easier for you, use degrees.)
a. (10 pts) Use a Sum identity.
b. (10 pts) Use a Half-Angle identity
7. (5 pts) Find the exact value of $\cos (\arcsin (x)+\arccos (x))$. (Hint: Use Sum identity.)
8. (10 pts) Find $\sin (2 u), \cos (2 u)$ and $\tan (2 u)$, given that $\sin (u)=\frac{1}{5}$ and $\cos (u)<0$.
9. (5 pts) Find the arc length on a circle of radius $r=6$ that is intercepted by an angle of 900°.
(10 pts) Bonus: Answer one of the following, for 10 points:

1. Build a cosine function that achieves its maximum height of $y=15$ meters at time $x=3$ seconds and its minimum height of $y=-3$ meters at $x=27$ seconds.
2. What is the area of the sector intercepted by an arc of 50° in a circle of radius 11 ? Round to
 4 decimal places.
