Covers Chapter 1

2. (5 pts) Find the arc length on a circle of radius r = 7 that is intercepted by an angle of 1935° .

3. Suppose you know that $\cos(\theta) = \frac{5}{7}$.

a. (5 pts) Assume the terminal side of the angle θ lies in the 1st quadrant. Find the other five

b. (5 pts) Suppose θ is any angle between 0 and 2π . Draw two pictures that satisfy the condition $\cos(\theta) = \frac{5}{7}$. Give two solutions, in degrees, to the equation $\cos(\theta) = \frac{5}{7}$..

c. (5 pts) Give all solutions to the equation $\cos(\theta) = \frac{5}{7}$, in degrees, rounded to four decimal places.

- 4. (10 pts) Sketch one period of the graphs of ...
 - a. ... $y = \sin(x)$ and $y = \csc(x)$ on the same set of coordinate axes.

b. ... y = cos(x) and y = sec(x) on the same set of coordinate axes.

5. (10 pts) Sketch the graph of one period of ...

a. ...
$$y = \tan(x)$$

b. ...
$$y = \cot(x)$$

6. (10 pts) Sketch the graph of $f(x) = 10 \sin\left(\frac{\pi}{8}x - \frac{\pi}{4}\right) + 15 = 10 \sin\left(\frac{\pi}{8}(x - 2)\right) + 15$

7. (10 pts) Build a cosine function that achieves its maximum height of y = 28 meters at time x = 5 seconds ->16cos (=(x-5))+1== and its minimum height of y = -4 meters at x = 25 seconds.

½ a period from

8. (10 pts) A tapered shaft has a diameter of 5 centimeters at the small end and is 15 centimeters long (See figure.). The taper is 3° . Find the diameter d of the large end of the shaft.

15 cm

where $\frac{x}{15}$ = tan3 declinant ten $\frac{x}{15}$ = tan3 depicture tens $\frac{x}{15}$ = tan3 \approx , 7861166892 $\frac{x}{15}$ how much the radius green $\frac{x}{15}$ = $\frac{x}{15}$ + $\frac{x}{15$

25+1.572233379

9. (5 pts) Find the exact value of $\csc\left(\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)\right)$.

10. (5 pts) Write an algebraic expression that is equivalent to $sec(arctan(3x)) = \sqrt{2} + 1$

- 11. (10 pts) Bonus: Answer one of the following, for 10 points:
 - Build a tangent function with vertical asymptotes at x = 3 and x = 7 that passes through the points (4,59), (5,27), and (6,-5):
 - b. Sketch the graphs of sin(x) and $sin^{-1}(x)$ on the same axes.
 - Sketch the graphs of cos(x) and arccos(x) on the same axes.

(m1, TT

供口 (1,0)