Reciprocal Identities

$\sin u = \frac{1}{\csc u}$	$\cos u = \frac{1}{\sec u}$	$\tan u = \frac{1}{\cot u}$
$\csc u = \frac{1}{\sin u}$	$\sec u = \frac{1}{\cos u}$	$\cot u = \frac{1}{\tan u}$

Quotient Identities

$$\tan u = \frac{\sin u}{\cos u} \qquad \cot u = \frac{\cos u}{\sin u}$$

Pythagorean Identities

sin² u + cos² u = 11 + tan² u = sec² u 1 + cot² u = csc² u

Cofunction Identities

$$\sin\left(\frac{\pi}{2} - u\right) = \cos u \qquad \cot\left(\frac{\pi}{2} - u\right) = \tan u$$
$$\cos\left(\frac{\pi}{2} - u\right) = \sin u \qquad \sec\left(\frac{\pi}{2} - u\right) = \csc u$$
$$\tan\left(\frac{\pi}{2} - u\right) = \cot u \qquad \csc\left(\frac{\pi}{2} - u\right) = \sec u$$

Even/Odd Identities

$\sin(-u) = -\sin u$	$\cot(-u) = -\cot u$
$\cos(-u) = \cos u$	$\sec(-u) = \sec u$
$\tan(-u) = -\tan u$	$\csc(-u) = -\csc u$

Sum and Difference Formulas

$$\sin(u \pm v) = \sin u \cos v \pm \cos u \sin v$$

$$\cos(u \pm v) = \cos u \cos v \mp \sin u \sin v$$

$$\tan(u \pm v) = \frac{\tan u \pm \tan v}{1 \mp \tan u \tan v}$$

From the Power-Reducing Formulas,

we have the half-angle formulas:

Double-Angle Formulas

$$\sin 2u = 2 \sin u \cos u$$

$$\cos 2u = \cos^2 u - \sin^2 u = 2 \cos^2 u - 1 = 1 - 2 \sin^2 u$$

$$\tan 2u = \frac{2 \tan u}{1 - \tan^2 u}$$

Power-Reducing Formulas

$$\sin^2 u = \frac{1 - \cos 2u}{2}$$
$$\cos^2 u = \frac{1 + \cos 2u}{2}$$
$$\tan^2 u = \frac{1 - \cos 2u}{1 + \cos 2u}$$

Sum-to-Product Formulas

$$\sin u + \sin v = 2 \sin\left(\frac{u+v}{2}\right) \cos\left(\frac{u-v}{2}\right)$$
$$\sin u - \sin v = 2 \cos\left(\frac{u+v}{2}\right) \sin\left(\frac{u-v}{2}\right)$$
$$\cos u + \cos v = 2 \cos\left(\frac{u+v}{2}\right) \cos\left(\frac{u-v}{2}\right)$$
$$\cos u - \cos v = -2 \sin\left(\frac{u+v}{2}\right) \sin\left(\frac{u-v}{2}\right)$$

Product-to-Sum Formulas

$$\sin u \sin v = \frac{1}{2} [\cos(u - v) - \cos(u + v)]$$

$$\cos u \cos v = \frac{1}{2} [\cos(u - v) + \cos(u + v)]$$

$$\sin u \cos v = \frac{1}{2} [\sin(u + v) + \sin(u - v)]$$

$$\cos u \sin v = \frac{1}{2} [\sin(u + v) - \sin(u - v)]$$

 $\sin\left(\frac{u}{2}\right) = \pm \sqrt{\frac{1 - \cos(u)}{2}}, \ \cos\left(\frac{u}{2}\right) = \pm \sqrt{\frac{1 + \cos(u)}{2}}, \ \text{with the } \pm \text{ being controlled by the quadrant in which}$ u, and therefore $\frac{u}{2}$, reside. $\tan\left(\frac{u}{2}\right) = \frac{1 - \cos(u)}{\sin(u)} = \frac{\sin(u)}{1 + \cos(u)} \text{ may bear discussing in class. But}$

basically, this last formula's sign will follow the sign of sine.