I never mass with $\quad S^{\prime} 1.5$

$$
\begin{aligned}
f(x) & =\sin (x) \\
g(x) & =a \sin (b x+c)+d \\
& =a \sin \left(b\left(x+\frac{c}{6}\right)\right)+d
\end{aligned}
$$

Relabel:

$$
g(x)=a \sin (b(x+c))+d
$$

This is what we work with.

$\sin (t)$ hacks the y-values
L : Kewise, $\cos (t)$ hacks th x-values.

$f(x)=$ Basic Function $\quad y=f(x)$
Let (x, y) be on its graph. $y=3 f(x)$
Then $3 f(x)$ has
$(x, 3 y)$
Vertical Stretch
$f(3 x)$ has
Horizontal Stretch
$f(x)+3$ has
$(x, y+3)$
vertical Shift
$f(x+3)$ has
Left shift
$(x-3, y)$ left 3
$\sin x$

Everything happens 4 times fasten. Shrinks towards y-axis by factor of $\frac{1}{4}$.

Period of $\sin x$ is 2π
Period of $\sin 4 x$ is $\frac{2 \pi}{4}=\frac{\pi}{2}$

$\frac{6}{\pi} \cdot \frac{3 \pi}{1}=9$
$g(x)=\sin (x-2 \pi)$ is same graph.

Here's how to break 'em down.

$$
\begin{aligned}
& y=\frac{3}{5} \sin \left(\frac{x}{3}-\frac{\pi}{6}\right) \\
& \frac{\frac{\pi}{6}}{\frac{1}{3}}=\frac{3 \pi}{6}=\frac{\pi}{2} \\
& =\frac{3}{5} \sin \left(\frac{1}{3}\left(x-\frac{\pi}{2}\right)\right) \\
& (x, y) \longmapsto\left(x, \frac{3}{5} y\right) \\
& (x, y) \longmapsto(3 x, y) \\
& \text { Vertical } \\
& \text { shrink } \\
& \text { Horizontal } \\
& \text { Stretch }
\end{aligned}
$$

(1) Vertical \& Horizontal Stretch
(2) Haizontal of vertical shifts*

* Rigid Transformations.

Model Tides:
High:30 ft @12am=0 hr
Low: 5 ft @ $12 \mathrm{pm}=12 \mathrm{hr}$
Build a twig function that models this
$\begin{aligned} \text { Amplituche } & =A \text { is } A \sin x \\ & =12.5 \mathrm{ft}\end{aligned}$
Period $=$ wavelength $=T=24$ hrs
Mid-height $=\frac{35}{2}=17.5$
stants@highPoint
$A=12.5: 12.5 \cos x$ at $x=0$

$$
T=24
$$

$$
\cos (b x) \Rightarrow T=
$$

when does $b x$ get to 2π ?
want $b x=2 \mathrm{~J}$ when

$$
\begin{gathered}
x=24 \\
24 b=2 \pi \\
b=\frac{2 \pi}{24}=\frac{\pi}{12} \\
12.5 \cos \left(\frac{\pi}{12} x\right)
\end{gathered}
$$

want midget to be 17.5

$$
g(x)=12.5 \cos \left(\frac{\pi}{12} x\right)+17.5
$$

I lied. High Tide is Jam.
Low Tide is Bpm:

$$
h(x)=12.5 \cos \left(\frac{\pi}{12}(x-3)\right)+17.5
$$

$S_{1.5} \# 51-21,39-45,61,65,83,85,87$

$$
\begin{aligned}
\# 87 \quad T & =\text { period }=\frac{2 \pi}{b} \\
f & =\text { frequency }=\frac{1}{T}
\end{aligned}
$$

