\qquad
Do all your work on separate paper.
Clearly label each problem and submit them in proper order.
Leave a 1 -inch margin at the top of every page.
If you don't finish a problem, start a fresh sheet of paper for the next one.
Do not erase any work. Put a line through any mistakes, but leave them in place.
There are up to 10 bonus points available. I will grade the first 10 points attempted.
Bonus questions are an assist in preparing for Part 2. (Fair warning!)

1. (5 pts) Convert 160° from degrees to radians. Round your answer to three decimal places.
2. (5 pts) Convert $\frac{7 \pi}{13}$ from radians to degrees. Round your answer to three decimal places.
3. Find the exact value (no calculator!) of each of the following:
a. $(5 \mathrm{pts}) \cos \left(\frac{4 \pi}{3}\right)$
b. (5 pts) $\sin \left(\frac{4 \pi}{3}\right)$
4. (10 pts) Suppose $\sin x=-\frac{2}{3}$ and $\cot x=\frac{\sqrt{5}}{2}$. Find the value of the other 4 trig functions corresponding to the angle x.
5. (10 pts) Construct a cosine function $g(t)=a \cos (b(t-c))+d$, where t is time, measured in seconds. Your cosine function $g(t)$ is to have...
a. ...a period of 3 seconds,
b. ... a high value of 75 inches at $t=2$ seconds,
c. ... and a low value of 15 inches.
6. (5 pts) If the shadow of a 50 -foot tree is 38 feet long, what is the angle of the sun?
7. Find the exact value. Use a diagram to show your work.
a. $(5 \mathrm{pts}) \arccos \left(-\frac{\sqrt{3}}{2}\right)$
b. $(5 \mathrm{pts}) \arctan (-1)$

Bonus (5 pts) To what point on the unit circle does the angle $\frac{4 \pi}{3}$ correspond?

Bonus (5 pts) Find all solutions x such that $0 \leq x \leq 2 \pi$ to the equation $2 \sin ^{2}(x)-\sin x-1=0$

Bonus (5 pts) Show that $\sin (2 x) \cos (3 x)=8 \cos ^{4}(x) \sin (x)-8 \cos ^{2}(x) \sin (x)$.

Bonus (5 pts) Let $x=6 \sin \theta$ and simplify the expression $\sqrt{36-x^{2}}$ as far as possible.

Bonus (5 pts) This one relies on having the one before it done correctly. Double jeopardy does attach!
a. If you assume that $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$, you can take your answer from the previous bonus problem one more step. Take that step, and explain why you took it.
b. If you assume that $\frac{\pi}{2} \leq \theta \leq \frac{3 \pi}{2}$, how will that change your answer to part a, and why?

Bonus (5 pts) Find the length of an arc on a circle with radius 20 centimeters intercepted by a central angle of 47^{0}. Round your answer to three decimal places.

Bonus ($\mathbf{5}$ pts) At what speed is a bicyclist traveling when her 24-inch-diameter tires are rotating at an angular speed of 3 revolutions per second? Write your answer in feet per second and round your answer to 3 decimal places.

Bonus ($\mathbf{5}$ pts) Find the area of a circular sector with a radius of 8 inches and a central angle of 40°. Round your answer to two decimal places.

