\qquad

1. 2.1 If $\sin (x)=-\frac{6}{\sqrt{61}}$ and $\tan (x)=\frac{6}{5}$, what is $\cos (x)$?
2. 2.1 Let $x=7 \sin \theta$ and write $\sqrt{49-x^{2}}$ as a trigonometric function of θ. Assume $0 \leq \theta<\frac{\pi}{2}$.
Bonus: What if the restriction on θ were $\frac{\pi}{2} \leq \theta \leq \frac{3 \pi}{2}$? Would that change your answer? If so, what would your answer be?
3. 2.2 Verify the identity $\sqrt{\frac{1-\cos \theta}{1+\cos \theta}}=\frac{1-\cos \theta}{|\sin \theta|}$
4. 2.2 Use a drawing to verify the identity $\cot \left(\sin ^{-1}\left(\frac{x}{2}\right)\right)=\frac{\sqrt{4-x^{2}}}{x}$. Hint: Let $\theta=\sin ^{-1}\left(\frac{x}{2}\right)$.
5. 2.3 Find all solutions θ, such that $0 \leq \theta \leq 2 \pi$. Then find all solutions. $\sin ^{2} \theta=3 \cos ^{2} \theta$
6. 2.4 Find the exact values of sine, cosine, and tangent for $\theta=\frac{7 \pi}{12}=\frac{\pi}{3}+\frac{\pi}{4}$. Simplify as much as you can without a calculator.
