1. Find two solutions for the equation $\tan \theta=\frac{1}{\sqrt{3}}$. Give both solutions in degrees and radians (which makes for four answers). Assume $0^{0} \leq \theta<360^{\circ}$ and $0 \leq \theta<2 \pi$ for the answers in radians.
2. Evaluate $\arcsin \left(-\frac{\sqrt{3}}{2}\right)$
3. Construct a cosine function, $f(x)$, that models daily temperatures in Gunnison Colorado, in midwinter, with a high of 30^{0} at $6 \mathrm{p} . \mathrm{m}$. (a bit of a stretch on time of day for peak temperature, I realize...), and a low of -20^{0} at $6 \mathrm{a} . \mathrm{m}$. One day represents one period. Make it so that $x=0$ corresponds to 12 a.m.
4. Sketch the graph of $g(x)=3 \tan \left(\frac{\pi}{10} x-\frac{\pi}{5}\right)-3$ by transforming the function $f(x)=\tan (x)$.
5. Evaluate the following:
a. $\cos (\arctan (x))$
b. $\csc (\arccos (x))$
