\qquad

Do your work on separate paper, organize it, and then show your work, here, but organized !!!

1. Find two solutions for θ. Give both solutions in degrees and radians (which makes for four answers). Assume $0^{0} \leq \theta<360^{\circ}$ and $0 \leq \theta<2 \pi$ for the answers in radians.
a. $\cos \theta=-\frac{\sqrt{2}}{2}$
b. $\sin \theta=\frac{\sqrt{3}}{2}$
2. Evaluate the following:
a. $\quad \arccos \left(-\frac{\sqrt{2}}{2}\right)$
b. $\operatorname{arccot}(-\sqrt{3})$
3. Construct a cosine function, $f(x)$, that models daily temperatures in Gunnison Colorado, in midwinter, with a high of 25° at 6 p.m. (a bit of a stretch on time of day for peak temperature, I realize...), and a low of -10^{0} at 6 a.m. One day represents one period.
4. Sketch the graph of $g(x)=4 \sin (2 x-\pi)+7$ by transforming the function $f(x)=\sin (x)$.
5. In Calculus II, trigonometric substitution is a technique for finding the area under the graph of a function involving Pythagorean-type expressions, such as $\sqrt{1-x^{2}}$ or $\sqrt{x^{2}+3^{2}}$. The technique involves evaluating expressions such as $\sin (\arctan (\mathrm{x}))$, by constructing an appropriate right triangle, in this case, one with an angle whose tangent is x. From the triangle, and a little Pythagorean action, we see that $\sin (\arctan (x))=\frac{x}{\sqrt{x^{2}+1}}$. In this
 spirit, evaluate the following:
a. $\cot (\arctan (x))$
b. $\tan (\arcsin (x))$
c. $\sin (\arccos (\mathrm{x}))$
6. Sketch one period of the graph of $g(x)=5 \cot \left(\frac{\pi}{4} x+\pi\right)+7$, by transforming the function $f(x)=\cot (x)$. I want to see the 3 key points corresponding to $x=\frac{\pi}{4}, \frac{\pi}{2}$, and $\frac{3 \pi}{4}$, in the graph of $f(x)$. I want to see where these points are moved by each succeeding transformation you apply to $f(x)$, and where they show up in the final graph of $g(x)$.
7. Now that you have the graph of g, sketch the graph of $y=5 \sqrt{3}+7$ on the same coordinate axes, and show where it intersects the graph of g.
