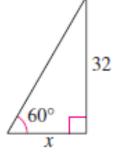
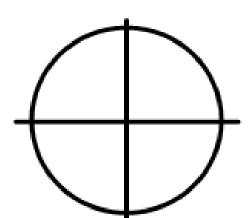

1. Find the value of sine, cosine and tangent for the angle θ :

b.
$$\csc(\theta) = \frac{5}{2}$$

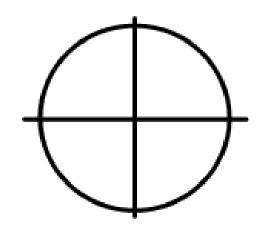

2. Suppose $\cot(\theta) = 4$. Find the following:

a.
$$tan(\theta)$$

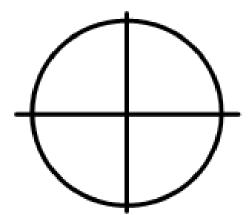
b.
$$sin(\theta)$$

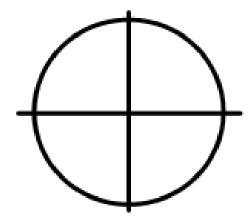

a.
$$tan(\theta)$$
 b. $sin(\theta)$ c. $cos(\frac{\pi}{2} - \theta)$ (Hint: See Page 226)

3. Solve for x



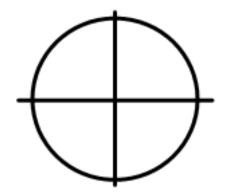
4. Find the reference angle, θ' , sketch θ and θ' in standard position, then evaluate $\sin(\theta), \cos(\theta)$, and $\tan(\theta)$. You shouldn't need a calculator.

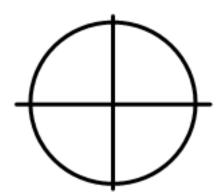

a.
$$\theta = 225^{\circ}$$

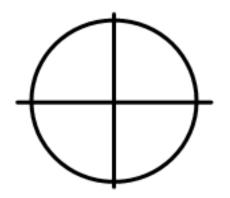

b.
$$\theta = -840^{\circ}$$

c.
$$\theta = \frac{7\pi}{6}$$

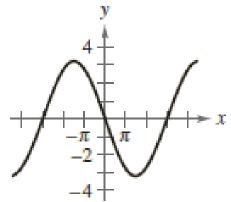
d.
$$\theta = -\frac{23\pi}{4}$$




5. Find two different solutions for each Give your answers in degrees $(0 \le \theta < 360^{\circ})$ and radians $(0 \le \theta < 2\pi)$


a.
$$\cos(\theta) = \frac{1}{2}$$

b.
$$\tan(\theta) = \frac{1}{\sqrt{3}}$$


c.
$$\sin(\theta) = -\frac{1}{\sqrt{2}}$$

6. Find the period and amplitude:

