Name_____ NO GRAPHING CALCULATORS!!!

I think you know the drill on margins and legibility. I can't give points for what I can't read. Take a minute, at the end, to make sure your work is organized and submitted in proper order.

- 1. Consider the triangle in the figure on the right. Do not use rounded results in your calculations for new results. Only round the final answers.
 - a. (10 pts) This triangle is oriented a bit differently than others you've seen *b* for this SSA situation. But you can still show there are 2 solutions to this triangle. Do so.
 - b. (10 pts) Use the Law of Sines to solve for the acute angle C for the picture shown, to as many digits as your calculator can display. Then round the measure of angle C to 3 decimal places. Circle both.
 - c. (10 pts) Use your work, above, to find the measure of angle B and the length of side b.
 - d. (5 pts) Use your (un-rounded) result for the *obtuse* angle *B* and the Law of Cosines to find the length of side *b*. You can check your answer using the Law of Sines, but I insist on seeing the Law of Cosines, here. Give the length *b* rounded to 3 decimal places.
 - e. (10 pts) Draw the picture for the case where angle *B* is acute. What is the measure of angle *C* in *this* case? Your work in part b, above, will be helpful. Your angle *C* better be obtuse. Circle this result and then round to 3 places and circle *that*.

- 2. Consider the directed line segment \overrightarrow{PQ} in the figure on the right. I want you to provide some basic facts about the vector \overline{u} :
 - a. (10 pts) Express the vector $\overline{u} = \overrightarrow{PQ}$ in component form.
 - b. (10 pts) Compute the magnitude of \overline{u} . Leave your answer in simplified radical \overline{v} form.
 - c. (5 pts) Find the direction angle of \overline{u} (the positive angle measured from the positive *x*-axis). Give an exact answer, which may involve an arctangent, and an approximate answer, in degrees, to 3 decimal places.
- 3. Let $\overline{u} = \langle -6, 2 \rangle$.
 - a. (5 pts) Express \overline{u} as a linear combination of the canonical (standard) unit vectors \overline{i} and \overline{j} .
 - b. (5 pts) What's another word for the sum of 2 vectors?

- 4. The wind is blowing at 30 knots ($(\|\overline{u}\| = 30 \text{ mph})$ from the West and a pilot in an extreme bush plane is cruising due North at 130 knots ($\|\overline{v}\| = 130 \text{ knots}$).
 - a. (5 pts) Draw a diagram and Tell me her heading (in degrees East of due North, e.g., "North, 40 degrees East.").
 - b. (5 pts) What is her ground speed?

BONUS Answer up to four (4) 5-pointers for up to 20 bonus points.

Bonus 1. Let $\overline{u} = \langle 5, 3 \rangle$ and $\overline{v} = \langle 2, 7 \rangle$.

- a. (5 pts) What is the angle between \overline{u} and \overline{v} , to the nearest $1/100^{\text{th}}$ of a degree?
- b. (5 pts) Find the projection of \overline{u} onto \overline{v} , that is, find $\operatorname{proj}_{\overline{v}}\overline{u}$. Draw a rough sketch showing \overline{u} , \overline{v} , and $\operatorname{proj}_{\overline{v}}\overline{u}$.

Bonus 2. (5 pts) Find the *exact* value of $\sin\left(\frac{u}{2}\right)$ and $\cos\left(\frac{u}{2}\right)$, if $u = \frac{5\pi}{6}$.

Bonus 3. (5 pts) In what quadrant does 2u lie, if $\tan(u) = -\frac{2}{3}$ and $\sin(u) > 0$? Full credit for reasoning your way on general considerations. 4 out of 5 for just using a calculator to find u, multiplying by 2, and observing the quadrant in which 2u lies.

Bonus 4. (5 pts) Find all solutions in $[0, 2\pi)$ to the equation $\sin(2x) = \frac{1}{2}$

Bonus 5. Let $f(x) = 6x^4 - 25x^3 + 32x^2 + 3x - 10$.

a. (5 pts) Use synthetic division to show that x = 2 + i is a solution of the equation f(x) = 0.

b. (5 pts) Find the linear factorization of f that is promised to us in the Fundamental Theorem of Algebra.

Bonus 6. Let z = -1 - i.

- a. (5 pts) Find $z + \overline{z}$ and $z\overline{z}$, where \overline{z} is the complex conjugate of z.
- b. (5 pts) Express z in trigonometric form.

