

- Each real number t corresponds to a point (x, y) on the
- 2. A function f is _____ when there exists a positive real number c such that f(t+c) = f(t)for all t in the domain of f.
- The smallest number c for which a function f is periodic is called the ______ of f.
- **4.** A function f is _____ when f(-t) = -f(t) and ____ when f(-t) = f(t).

Determining Values of Trigonometric Functions In Exercises 5-8, determine the exact values of the six trigonometric functions of the real number t.

Finding a Point on the Unit Circle In Exercises 9-12, find the point (x, y) on the unit circle that corresponds to the real number t.

10.
$$t = \pi/4$$

12.
$$t = 4\pi/3$$

Evaluating Sine, Cosine, and Tangent In Exercises 13-22, evaluate (if possible) the sine, cosine, and tangent at the real number. 16. $t = -\frac{\pi}{4}$

Evaluating Trigonometric Functions In Exercises 23-30, evaluate (if possible) the six trigonometric functions at the real number.

26.
$$t = 7\pi/4$$

30.
$$t = -\pi$$

Using Period to Evaluate Sine and Cosine In Exercises 31-36, evaluate the trigonometric function using its period as an aid.

31.
$$\sin 4\pi$$

32.
$$\cos 3\pi$$

35.
$$\sin \frac{197}{6}$$

36.
$$\sin\left(-\frac{8\pi}{3}\right)$$

Using the Value of a Trigonometric Function In Exercises 37-42, use the value of the trigonometric function to evaluate the indicated functions.

38.
$$\sin(-t) =$$

38.
$$\sin(-t) = \frac{3}{8}$$
 39. $\cos(-t) = -\frac{1}{5}$ 42. $\cos t = \frac{4}{5}$

(a)
$$\cos t$$
 (a) $\cos(\pi - t)$

(b)
$$\cos(t + \pi)$$

Using a Calculator In Exercises 43-48, use a calculator to evaluate the trigonometric function. Round your answer to four decimal places. (Be sure the calculator is in the correct mode.)

43.
$$\tan \pi/3$$

44.
$$\csc 2\pi/3$$

True or False? In Exercises 51-54, determine whether the statement is true or false. Justify your answer.

51. Because $\sin(-t) = -\sin t$, the sine of a negative angle is a negative number.

$$54. \cos\left(-\frac{7\pi}{2}\right) = \cos\left(\pi + \frac{\pi}{2}\right)$$

- 55. Conjecture Let (x_1, y_1) and (x_2, y_2) be points on the unit circle corresponding to $t = t_1$ and $t = \pi - t_1$, respectively.
 - (a) Identify the symmetry of the points (x_1, y_1) and (x_2, y_2) .
 - (b) Make a conjecture about any relationship between $\sin t_1$ and $\sin(\pi - t_1)$.
 - (c) Make a conjecture about any relationship between $\cos t_1$ and $\cos(\pi - t_1)$.
- 56. Using the Unit Circle Use the unit circle to verify that the cosine and secant functions are even and that the sine, cosecant, tangent, and cotangent functions
- 57. Verifying Expressions Are Not Equal Verify that $\cos 2t \neq 2 \cos t$ by approximating $\cos 1.5$ and 2 cos 0.75.