Vocabulary: Fill in the blanks.

- 1. The _____ of two vectors yields a scalar, rather than a vector.
- 2. The dot product of $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$ is $\mathbf{u} \cdot \mathbf{v} = \underline{\hspace{1cm}}$.
- 3. If θ is the angle between two nonzero vectors **u** and **v**, then $\cos \theta =$ _____.
- 4. The vectors \mathbf{u} and \mathbf{v} are _____ when $\mathbf{u} \cdot \mathbf{v} = 0$.
- 5. The projection of \mathbf{u} onto \mathbf{v} is given by $\text{proj}_{\mathbf{v}}\mathbf{u} = \underline{\qquad}$.
- **6.** The work W done by a constant force **F** as its point of application moves along the vector \overline{PQ} is given by $W = \underline{\hspace{1cm}}$ or $W = \underline{\hspace{1cm}}$.

Finding a Dot Product In Exercises 7–14, find u · v.

7.
$$\mathbf{u} = \langle 7, 1 \rangle$$
 8. $\mathbf{u} = \langle 6, 10 \rangle$ 11. $\mathbf{u} = 4\mathbf{i} - 2\mathbf{j}$

8.
$$\mathbf{u} = \langle 6, 10 \rangle$$

$$11. \ \mathbf{u} = 4\mathbf{i} - 2\mathbf{j}$$

$$\mathbf{v} = \langle -3, 2 \rangle$$
 $\mathbf{v} = \langle -2, 3 \rangle$

$$v = (-2, 3)$$

$$\mathbf{v} = \mathbf{i} - \mathbf{j}$$

Using Properties of Dot Products In Exercises 15-24, use the vectors $\mathbf{u} = \langle 3, 3 \rangle$, $\mathbf{v} = \langle -4, 2 \rangle$, and $w = \langle 3, -1 \rangle$ to find the indicated quantity. State whether the result is a vector or a scalar.

23.
$$(\mathbf{u} \cdot \mathbf{v}) - (\mathbf{u} \cdot \mathbf{w})$$

22.
$$2 - \|\mathbf{u}\|$$
 23. $(\mathbf{u} \cdot \mathbf{v}) - (\mathbf{u} \cdot \mathbf{w})$ 24. $(\mathbf{v} \cdot \mathbf{u}) - (\mathbf{w} \cdot \mathbf{v})$

Finding the Angle Between Two Vectors In Exercises 31–40, find the angle θ between the vectors.

31.
$$u = \langle 1, 0 \rangle$$

32.
$$\mathbf{u} = (3, 2)$$

$$\mathbf{v} = (0, -2)$$

$$\mathbf{v} = \langle 0, -2 \rangle \qquad \qquad \mathbf{v} = \langle 4, 0 \rangle$$

Finding the Angle Between Two Vectors In Exercises 41-44, graph the vectors and find the degree measure of the angle θ between the vectors.

42.
$$u = 6i + 3j$$

$$\mathbf{v} = -4\mathbf{i} + 4\mathbf{j}$$

Finding the Angles in a Triangle In Exercises 45-48, use vectors to find the interior angles of the triangle with the given vertices.

Determining Orthogonal Vectors In Exercises 53-58, determine whether u and v are orthogonal.

Using the Angle Between Two Vectors In Exercises 49-52, find $u \cdot v$, where θ is the angle between

58.
$$u = (\cos \theta \sin \theta)$$

$$\mathbf{v} = \langle \sin \theta, -\cos \theta \rangle$$

F 9

0

 $\|\mathbf{u}\| = 100, \|\mathbf{v}\| =$

Decomposing a Vector into Components In

Exercises 59-62, find the projection of u onto v. exercises 37-02, und the projection of u onto y, one of write u as the sum of two orthogonal vectors, one of which is projvu.

which is P
59.
$$u = (2,2)$$

59.
$$u = (6, 1)$$