## Vocabulary: Fill in the blanks.

1. A \_\_\_\_\_ can be used to represent a quantity that involves both magnitude and direction.

- 2. The directed line segment  $\overrightarrow{PQ}$  has \_\_\_\_\_\_ point P and \_\_\_\_\_ point Q.
- 3. The \_\_\_\_\_ of the directed line segment  $\overrightarrow{PQ}$  is denoted by  $||\overrightarrow{PQ}||$ .
- **4.** The set of all directed line segments that are equivalent to a given directed line segment  $\overrightarrow{PQ}$  is a \_\_\_\_\_\_ v in the plane.
- 5. In order to show that two vectors are equivalent, you must show that they have the same \_\_\_\_\_ and the same \_\_\_\_\_ .
- 6. The directed line segment whose initial point is the origin is said to be in \_\_\_\_\_\_.
- A vector that has a magnitude of 1 is called a \_\_\_\_\_\_.
- 8. The two basic vector operations are scalar \_\_\_\_\_ and vector \_\_\_\_\_
- **9.** The vector  $\mathbf{u} + \mathbf{v}$  is called the \_\_\_\_\_ of vector addition.
- 10. The vector sum  $v_1 \mathbf{i} + v_2 \mathbf{j}$  is called a \_\_\_\_\_\_ of the vectors  $\mathbf{i}$  and  $\mathbf{j}$ , and the scalars  $v_1$  and  $v_2$  are called the \_\_\_\_\_ and \_\_\_\_ components of  $\mathbf{v}$ , respectively.

## In Exercises 11 and 12, show that u and v are equivalent.

Finding the Component Form of a Vector In Exercises 13-24, find the component form and magnitude of the vector v.

11.



13.



14



18.



Sketching the Graph of a Vector In Exercises 25-30, use the figure to sketch a graph of the specified vector. To print an enlarged copy of the graph, go to *MathGraphs.com*.

Vector Operations In Exercises 31–38, find (a)  $\mathbf{u} + \mathbf{v}$ , (b)  $\mathbf{u} - \mathbf{v}$ , and (c)  $2\mathbf{u} - 3\mathbf{v}$ . Then sketch each resultant vector.

31. 
$$\mathbf{u} = \langle 2, 1 \rangle$$
,  $\mathbf{v} = \langle 1, 3 \rangle$  35.  $\mathbf{u} = \mathbf{i} + \mathbf{j}$ ,  $\mathbf{v} = 2\mathbf{i} - 3\mathbf{j}$ 



28. 
$$u + 2v$$

Finding a Unit Vector In Exercises 39-48, find a unit vector in the direction of the given vector. Verify that the result has a magnitude of 1.

**39.** 
$$\mathbf{u} = \langle 3, 0 \rangle$$

44. 
$$v = 6i - 2j$$

**41.** 
$$\mathbf{v} = \langle -2, 2 \rangle$$