I think the 2.3 is likely to be a bit long for some of you. I'd be OK with cutting it about in half, although I don't see a single one of those that doesn't build some muscle.

I just have the sense that tolerance for difficulties is not very high in this class, when difficulties is the name of the game, going forward. I really want the class to transition to a cheerful hardnosed bunch, for whom nothing is too much. You get that going, NOW, and the rest of your career in college and beyond gets a whole lot easier!

But to save you some time, you may do the following problems for 2.3:
\#s 1 - 6 All, 11, 15, 19, 23, 27, 31, 35, 37*, 39, 43, 45, 63, 67, 71, 73, 87, 88

* Square Both sides!

And recall, that squaring both sides often introduces extraneous solutions, the same way casting a net often introduces fish you don't want...

12282,3 45 $\frac{1-6}{14}, 11-47,63-73,87,88$
(1) Enit, isolate the trigs on one side
(3) $2 \sin \theta+1=0$ has $\sin \ln \theta=\frac{7 \pi}{6}+2 n \pi$ OR $\theta=\frac{11 T}{6}+2 n \pi$, which ane genere solns
(3) $2 \tan ^{2} x-3 \tan x+1-13$ tin eq of of quadrate type.
(1) Asolim that doegn of work is exthameous. 14.5-10 vuily solns
(3) $\tan x-\sqrt{3}=0$

$$
2 / \sqrt{3}
$$

(a) $x=\frac{\pi}{3} ; \tan \frac{\pi}{3}-\sqrt{3}=\sqrt{3}-\sqrt{3}=0$
(b) $x=\frac{4 \pi}{3}: \tan \frac{4 \pi}{3}-\sqrt{3}=\sqrt{3}-\sqrt{3}=0$

(6) $\sec x-2=0 \quad 2 / \sqrt{3}$
(d) $x=\frac{\pi}{3}: \sec \frac{\pi}{3}-2=2-2=0$
(b) $x=\frac{5 \pi}{3}: \sec \frac{5 \pi}{3}-2=2-2=0$

$12252,2411-47,63-73,87,88$

* $11-24$ Solve/

$$
\text { (11) } \begin{aligned}
\sqrt{3} \csc x-2 & =0 \\
\sqrt{3} \csc x & =2 \\
\csc x & =\frac{2}{\sqrt{3}}
\end{aligned}
$$

$$
\Rightarrow x=\frac{\pi}{3}+2 n \pi \text { or } x=\frac{2 \pi}{3}+2 n \pi, n \in \mathbb{Z}
$$

(13)

$$
\begin{aligned}
\cos x+1 & =-\cos x \\
2 \cos x & =-1 \\
\cos x & =-\frac{1}{2}
\end{aligned}
$$

$\Rightarrow x=\frac{2 \pi}{3}+2 n \pi$ or $x=\frac{4 \pi}{3}+2 n \pi, n \in \mathbb{Z}$.
(15)

$$
\begin{aligned}
& 3 \sec ^{2} x-4=0 \\
& 3 \sec ^{2} x=4 \\
& \sec ^{2} x=\frac{4}{3} \\
& |\sec x|=\sqrt{\frac{4}{3}} \\
& \sec x= \pm \frac{2}{\sqrt{3}}
\end{aligned}
$$

$$
x=\frac{\pi}{6}+n \pi \text { or } x=\frac{5 \pi}{6}+n \pi, n \in \mathbb{Z}
$$

$$
12282.34519-47,63-73,87,88
$$

(9)

$$
\begin{aligned}
2 \sin ^{2}(2 x) & =1 \\
\sin ^{2}(2 x) & =\frac{1}{2} \\
\sin (2 x) & = \pm \sqrt{\frac{1}{2}}= \pm \frac{1}{\sqrt{2}}
\end{aligned}
$$

Pictures for $2 x$:

$$
\sin (2 x)=\frac{1}{\sqrt{2}}
$$

These are solutions of $\sin (2 x)=\frac{1}{\sqrt{2}}$ for $2 x \in[0,2 \pi]$. But we meed to capture all solutions for $x \in 2 \pi$, be fore we can build all solutions with the tho d $+2 n \pi b i$.
$049823317-47,63-73,87,88$
(17)

$$
\begin{aligned}
& 4 \cos ^{2} x-1=0 \\
& 4 \cos ^{2} x=1 \\
& \cos ^{2} x=\frac{1}{4} \\
& \cos x= \pm \frac{1}{2}
\end{aligned}
$$

Again, some of these pan up mieely?

$$
x=\frac{\pi}{3}+n \pi \text { or } x=\frac{2 \pi}{3}+n \pi, n \in \mathbb{Z}
$$

(9) $2 \sin ^{2}(2 x)=1$ SEE NEXT

$$
\begin{aligned}
\sin ^{2}(2 x) & =1 \text { GENE } \\
\sin ^{2}(2 x) & =\frac{1}{2} P A G E \\
\sin (2 x) & = \pm \frac{1}{\sqrt{2}}
\end{aligned} \quad\left\{\begin{array}{l}
-1 / \sqrt{2} \mid \\
2 x \text { victual }
\end{array}\right.
$$

$$
\begin{aligned}
& \sin (2 x)=-\frac{\sqrt{2}}{4} \quad \text { on } 2 x=\frac{3 \pi}{4} \quad 2 x \text { pictor } \\
& 2 x=\frac{\pi}{4}
\end{aligned}
$$

$$
x=\frac{\pi}{8}+2 n \pi, \frac{3 \pi}{6}+2 n \pi, \frac{5 \pi}{\theta}+2 n \pi, \frac{+\pi}{8}+2 n \pi
$$

Not that hand: $n \in \mathbb{Z}$

$$
\begin{aligned}
& 2 x=\frac{\pi}{4}+n \pi \quad \text { or } \quad 2 x=\frac{3 \pi}{4}+n \pi \\
& x=\frac{\pi}{4}+n \frac{\pi}{2} \quad \text { or } x=\frac{3 \pi}{4}+\frac{n \pi}{2}
\end{aligned}
$$

12282,3 Hs $19-47,63-73,87,88$
So.

$$
\begin{aligned}
& 2 x=\frac{\pi}{4}+2 n \pi \\
& 2 x=\frac{3 \pi}{4}+2 n \pi \\
& 2 x=\frac{5 \pi}{4}+2 n \pi \\
& 2 x=\frac{7 \pi}{4}+2 n \pi
\end{aligned}
$$

We can collapsed some l this by observing that $\frac{\pi}{4}$ of $\frac{5 \pi}{4}$ are π radians apart

This means that
 $2 x=\frac{\pi}{4}+n \pi$ url captun ad of theme
and $2 x=\frac{3 \pi}{4}+n \pi$ will cap tue all of thea guys:
r. $\frac{3 \pi}{4}$ g $\frac{7 \pi}{4}$ ar o also IT nadirs apant.
$12252,3+519-47,63-73,87,88$
(19) entod

$$
\text { So } \begin{aligned}
2 x & =\frac{\pi}{4}+n \pi \\
& O R \\
2 x & =\frac{3 \pi}{4}+n \pi
\end{aligned}
$$

captures alD solutions Pr $2 x$
Now, just divide by 20

SinA $2 x=\frac{\pi}{\theta}+\frac{n \pi}{2}$
Ans

$$
x=\frac{3 \pi}{8}+\frac{n \pi}{2}
$$

Captrax a 01 the solutrons Por x. an $\frac{\text { I }}{2}$ apat $\operatorname{are} \frac{\pi}{2}$ apant

Notre that pretures for $2 x$ n [o,2rd. callapses to x in $[0, \pi]$? So we lose half
$\frac{3 \pi}{4}=\frac{13 \pi}{8}$, of whatis goving on for $x \in[0,2 \pi]$ Thase are the angles that come Inom gonig twhe anound with $2 x$.
$122 S_{2.3}=19-47,63-73,87,88$
The up-shot is that if you capture all solutions $2 x$ for $\sin (2 x)= \pm \frac{1}{\sqrt{2}}$, then you divide by 2 to get solutions x. How will sometimes find book answers that are more elegant, but that comes from observing things like $\frac{5 \pi}{4}-\frac{T}{4}=\pi$
so that $2 x=\frac{\pi}{4}+2 n \pi$
08

$$
2 x=\frac{5 \pi}{4}+2 n \pi
$$

collapses down to

$$
2 x=\frac{\pi}{4}+n \pi
$$

When n is even

When n is odd?,
Hope this helps!

$122 S 2,3 H_{52147,68,77,87,88}$
(21) $\tan (3 x)(\tan (x)-1)=0 \longrightarrow$
$\tan (3 x)=0$ or $\tan x-1=0$

$$
\begin{aligned}
& 3 x=0+n \pi=n \pi \\
& x=\frac{n \pi}{3}
\end{aligned}
$$

$$
\frac{\pi}{4}+2 \sin \pi
$$

OR

$$
\frac{5 \pi}{4}+2 n \pi
$$

collapses to

$$
\frac{\pi}{4}+n \pi
$$

$12282,3+523-47,68-73,87,88$
(23) $\sin x(\sin x+1)=0$
$\sin x=0$

\int From $x=0+2 n \pi$
$x=\pi+2 n \pi$
$\sin x=-1$

$$
x=\frac{3 \pi}{2}+2 n \pi
$$

s 25-35 Fid all sutatioms an the intenval $[0,2 \pi]$
25

$$
\begin{aligned}
& 5 \cos ^{3} x=\cos x \\
& \cos ^{3} x-\cos x=0 \\
& \cos x\left(\cos ^{2} x-1\right)=0
\end{aligned}
$$

$\cos x=0 \quad$ or $\cos ^{2} x-1=0$

$$
-\sin ^{2} x=0
$$

$\sin x=0$

122 S 2.3 *5 27-47, 68-73,87,88

$$
\begin{aligned}
& 37) 3 \tan ^{3} x=\tan x \\
& 3 \tan ^{3} x-\tan x=0 \\
& \tan x\left(3 \tan ^{2} x-1\right)=0
\end{aligned}
$$

$\tan x=0$

OR $3 \tan ^{2} x-1=0$

$$
\begin{aligned}
3 \tan ^{2} x & =1 \\
\tan ^{2} x & =\frac{1}{3}
\end{aligned}
$$

$x=0, \pi$
$x=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$

$\tan x= \pm \sqrt{\frac{1}{3}}= \pm \frac{1}{\sqrt{3}}$

$$
\text { (29) } \sec ^{2} x-\sec x=2
$$

$$
\begin{aligned}
& u^{2}-u-2=0 \\
& (u-2)(u+1)=0 \\
& u=2 \quad u=-1
\end{aligned}
$$

122 S2, 3 ts 31-47, 6 -73, 67,98
(31)

$$
\begin{aligned}
& 2 \sin x+\csc x=0 \\
& 2 \sin x+\frac{1}{\sin x}=0 \\
& \frac{2 \sin ^{2} x+1}{\sin ^{2} x}=0 \\
& 2 \sin ^{2} x+1=0 \\
& \sin ^{2} x=-\frac{1}{2} \text { Impossith } ?_{0}
\end{aligned}
$$

But doegnt it have this pre tune P

$2 \sin x=\csc x$, yeat.
$I t$ has solutions
But we have

$$
2 \sin x=-\csc x, \text { which }
$$

has mo sohitro
$2 \sin x 9$

No intersetrons or.
$12252,74533-47,63-73,87-80$
33

$$
\begin{aligned}
& \text { (33) } 2 \cos ^{2} x+\cos x-1=0 \\
& 2 u^{2}+u-1=0 \\
& (2 u-1)(u+1)=0 \\
& u=\frac{1}{2} \quad u=-1 \\
& \cos x=\frac{1}{2} \quad \cos x=-1 \\
& \frac{2}{1} \sqrt{3} \quad 1 \\
& x=\frac{\pi}{3}, \frac{5 \pi}{3}
\end{aligned}
$$

(35) $2 \operatorname{sic}^{2} x+\tan ^{2} x=0$

$$
\begin{aligned}
& 2 \sec ^{2} x+\sec ^{2} x-1-3=0 \\
& 3 \sec ^{2}-4=0 \\
& 3 \sec ^{2} x=4 \\
& \sec ^{2} x=\frac{4}{3}-\left.\frac{1}{-\sqrt{3}}\right|_{2} ^{-1} \\
& x=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6} \\
& \sec x= \pm \sqrt{\frac{4}{3}}= \pm \frac{2}{\sqrt{3}}
\end{aligned}
$$

$122 \quad 82,3$ H337-47,63-72, 87,88
$37 \csc x+\cot x=1$

$$
\begin{aligned}
& \frac{1}{\sin x}+\frac{\cos x}{\sin x}-1=0 \\
& \frac{1+\cos x-\sin x}{\sin x}=0 \\
& 1+\cos x-\sin x=0
\end{aligned}
$$

$$
1+\cos x=\sin x
$$

Example 6 says try squaring both sides. G000 ADvice.

$$
\begin{aligned}
& \cos x+1=\sin x \\
& \cos ^{2} x+2 \cos x+1=\sin ^{2} x=1-\cos ^{2} x \\
& 2 \cos ^{2} x+2 \cos x=0 \\
& 2 \cos x(\cos x+1)=0 \\
& \cos x=0 \\
& \frac{\cos x=-1}{2} \frac{3}{2}
\end{aligned}
$$

Nope

$$
\begin{aligned}
& \text { Nope } \frac{\pi}{2}=1 ? \\
& \csc \frac{\pi}{2}+\cot \frac{2}{2} \\
& 1+0=1 ?
\end{aligned}
$$

Kep

Mypicture says $\frac{3 \pi}{2}$ wont work. Let's Check.

$$
x=\frac{\pi}{2} \pi \quad \frac{3 \pi}{2} \text { is }
$$ extraneous

$1228^{\prime} 2,3$ \#34-47,63-7287,88
39

$$
\begin{aligned}
& 2 \cos (2 x)-1=0 \\
& 2 \cos (2 x)=1 \\
& \cos (2 x)=\frac{1}{2}
\end{aligned}
$$

OR

$$
\cos (2 x)=\frac{1}{2}
$$

(41) $\tan (3 x)-1=0$

$$
\frac{3 x=\frac{\pi}{4}+n \pi}{x=\frac{\pi}{12}+\frac{n \pi}{3}}
$$

* from $P_{x}=\frac{\pi}{4}+2 n \pi \quad \& \quad 3 x=\frac{5 \pi}{4}+2 n \pi$ which collapse dowm to

$$
3 x=\frac{\pi}{4}+n \pi
$$

122 84,3*5.43-47,63-73,87,88
(43)

$$
\begin{aligned}
& 2 \cos \left(\frac{x}{2}\right)-\sqrt{2}=0 \\
& 2 \cos \left(\frac{x}{2}\right)=\sqrt{2} \\
& \cos \left(\frac{x}{\sqrt{2}}\right)=\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}} \\
& \frac{\sqrt{2}}{2}
\end{aligned}
$$

So $\frac{x}{2}=\frac{\pi}{4}$ or $\frac{7 \pi}{4} \longrightarrow(+2 n \pi)$

$$
\begin{aligned}
& x=\frac{\pi}{2}+4 n \pi \\
& x=\frac{\pi \pi}{2}+4 n \pi
\end{aligned}
$$

4s 45-48 Find x-intencepts (Dongy
45

$$
\begin{aligned}
& y=\sin (\pi \\
& \sin \frac{\pi}{2} \\
& \frac{\pi}{-1} 1
\end{aligned}
$$

$$
\sin \left(\frac{\pi}{2}\right)=-1
$$

$$
\begin{aligned}
& \Rightarrow \frac{\pi x}{2}=\frac{3 \pi}{2}+2 n \pi \\
& x=\frac{3 \pi}{2} \cdot \frac{2}{\pi}+\frac{2 n \pi}{1} \cdot \frac{2}{\pi} \longrightarrow \\
& x=3+4 n \quad n \in \mathbb{Z}
\end{aligned}
$$

122 S2.3 4, 47,83-73,87-8
47

$$
y=\tan ^{2}\left(\frac{\pi x}{6}\right)-3 \quad \text { set } 0
$$

$$
\tan ^{2} \cdot\left(\frac{\pi x}{6}\right)=3 \quad-\frac{\pi x}{6}=\frac{\pi}{3}+n \pi
$$

$$
\pi \quad \tan \left(\frac{\pi x}{6}\right)= \pm \sqrt{3} \Rightarrow x=\frac{\pi}{3} \cdot \frac{6}{\pi}+\frac{n \pi}{1} \cdot \frac{6}{\pi}
$$

$$
\Rightarrow x=2+6 n
$$

H563-74 Use nverse funcs, as meeded, to Rhd all sotuthore. (When thoogs amem it nice" n radians, degues aan neally help you "Eet.4) Assum $x \in[0,2 \pi]$ Wait!
(63) $\tan ^{2} x+\tan x-12=0$

$$
\begin{aligned}
& u^{2}+u-12=0 \\
& (u+4)(u-3)=0 \\
& \tan x=-4 \quad 02 \quad \tan x=-3
\end{aligned}
$$

Book amswers suggest if it inn' Clomy wst lave it as
$x=$ arctan (-4) or x =anctonl 3an inverse figg

$\operatorname{arctam}(-4)$ is this one. Mall sure you capture the othen,
$12282,3+63-73,6+5$
(63 entid $\arctan (3)$, arctan (3)+T
Wait: anctan (-4) is Not in $[0,2 \pi]$
Recal0, Namge o P anctan (x) is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
Stall. oun preture 's good. We juit meed to tweak the ansuna to get ien all $\therefore[0,2 \pi]$

事 $\arctan (-4)+\pi$, arctan $(-4)+2 \pi$

$\arctan (3)$
quetan $(3)+\pi$
Final Answer

$12282,8+565-73,87-8$
(65 $\sec ^{2} x-6 \tan x=-4$

$$
\begin{aligned}
& \tan ^{2} x+1-6 \tan x+4=0 \\
& \tan ^{2} x-6 \tan x+5=0 \\
& (4-5)(4-1)=0
\end{aligned}
$$

$$
\tan x=5
$$

$$
\tan x=1
$$

$$
x=\arctan (5)
$$

$$
x=\frac{\pi}{4}, \frac{5 \pi}{4}
$$

$$
x=\arctan (5)+\pi
$$

(67) $2 \sin ^{2} x+5 \cos x=4$

$$
\begin{aligned}
& 2-2 \cos ^{2} x+5 \cos x-4=0 \\
& -2 \cos ^{2} x+5 \cos x-2=0 \\
& 2 u^{2}-5 u+2=0 \\
& (2 u-1)(u-2)=0 \\
& x=\frac{\pi}{3}, \frac{5 \pi}{3} \\
& 2 \cos x=1 \\
& \cos x=\frac{1}{2} \quad \text { NeVah/ }
\end{aligned}
$$

122 \&2, 3 S6q-73, 87-8
(69) $\cot ^{2} x-9=0$ We didn't do much with
$\cot x= \pm 3$

$$
\tan x= \pm \frac{1}{3}
$$ $\cot ^{-1}(x)$. We could work with it, or just tera this into an equiralent equatron is volung $\arctan (x)=\tan ^{-1}(x)$

Add π to (1) of get (4)

Add π to (2) I get (3)
So : $x=\arctan \left(\frac{3}{3}\right), \arctan \left(\frac{1}{3}\right)+\pi$, anctan $\left(-\frac{1}{3}\right)$, anctam $\left(-\frac{1}{3}\right)+\pi$

Youn answer may look different. but shill be aneot, e.g., arcot(3) cm
$52 B+5,71-3,87-8$
(71) $\sec ^{2} x-4 \sec x=0$
$\sec x(\sec x-4)=0$
$\sec x=0$

$\Delta \operatorname{arcsec}(x)$ sees only this one. Think back to the restriction we made on cosine u order to get this.
Heck, just turn it into a cosine question
$\sec x=4<\cos x=\frac{1}{4}$ Ahhh
So $x=$ arecos $\left(\frac{1}{4}\right),-\arccos \left(\frac{1}{4}\right)$, sian we have this preture foo the two

12282,3 H5 73.87-8
73

$$
\begin{gathered}
\csc ^{2} x+3 \csc x-4=0 \\
u^{2}+3 u-4=0 \\
(u+4)(u-1)=0 \\
\csc x=-4 \quad \csc x=1 \\
\sin x=-\frac{1}{4} \quad \sin x=1
\end{gathered}
$$

the one ancsin?
sees

$$
x=\arcsin \left(-\frac{1}{4}\right),-\arcsin \left(-\frac{1}{4}\right)+\pi
$$

$\arcsin \left(-\frac{1}{4}\right)$

$$
-\arcsin \left(-\frac{1}{4}\right)+\pi
$$

$122 \$ 2.3$ \$5 87-8
(87) $f(x)=\frac{\sin x}{x}$

$$
\begin{aligned}
(a) \mathcal{L f}) & =R\{\{0\} \\
O R & =(-\infty, 0) \cup(0, \infty) \\
O R & =\{x \mid x+0\}
\end{aligned}
$$

(b) It's symmetir abowt the $\}$-axis because it's even $\frac{\text { ddd }}{\text { odd }}=-\quad-=\sqrt{-}=$ enen

It has honzontal asymptote $y=0$
Eventualy $x \rightarrow \infty$, but suc x natels anound between ± 1

$$
\frac{\sin x}{x} \xrightarrow{x \rightarrow \infty} \frac{\operatorname{simallish}}{\text { Ginormous }}=0
$$

(c) as $x \rightarrow 0$,
$\frac{\sin x}{x} \longrightarrow 1$, but you can meven quito

$$
l+x=0
$$

$1228213487-8$
(d) How many sotuting does $\frac{\sin x}{x}=0$ have is the intaval $[8,8] ?$

$$
\frac{\sin x}{x}=0 \rightarrow \sin x=0 \quad \text { So as mani g }
$$

solutions as $\sin x=0$ has $x[-8,8]$

$$
x=n \pi \quad n=0, \pm 1, \pm 2
$$

 when $n= \pm 3$, we aet $| \pm 3 \pi|>9|>|8|$
So then are' 5 solutions

$$
x=0, \pm \pi, \pm 2 \pi
$$

122 S2,3 88
(88) $f(x)=\cos \left(\frac{1}{x}\right)$

Hand to graph.
(d) Its Domain is

$$
[0, \infty)=\{x \mid x>0\}
$$

(b) Itis symmehir about the y-axis.

It has horizontal asympto to $y=1$ as $x \rightarrow \infty, \frac{1}{x} \longrightarrow 0$ and so $\cos \left(\frac{1}{x}\right) \rightarrow 1$.
(c) As $x \rightarrow 0^{+}$or $x \rightarrow 0^{-}$, it basically oscillates an infinite of times?
(d) $\cos \left(\frac{1}{x}\right)=0$ has a greatest solution $\cos \left(\frac{1}{x}\right)=0$ has an win te of solutions

$$
\cos \left(\frac{1}{x}\right)
$$

Max solution,

$$
x=\frac{2}{\pi}
$$

