$\qquad$

This Project is due by Test Day, whenever you take your test, either Wednesday, 12/4 or Thursday, 12/5. Neatness, Completeness and Margins count. Show all work.

Early Birds: Friday BEFORE the test. $10 \%$ bonus for doing so, with the added benefit of getting feedback BEFORE the test. Submit a quality scan to a single, multi-page PDF, you may submit your work by e-mail in the Course Shell to hmills1@online.aims.edu. Or snail-mail it to me at the address in the Syllabus.

Due to the holiday, I may not get all the early-bird submissions graded and returned until Monday night or Tuesday.

1 Solve the system of linear equations $\begin{aligned} & 3 x+2 y=12 \\ & 5 x-y=10\end{aligned}$ in 3 ways:
a. (10 pts) Find the general vicinity of the solution by graphing the system. This should give you a general idea. Don't worry about it being super-accurate, although the more care you take, the better the estimate will be. Just graph the two lines by the intercept method. Supply the exact answer after you work parts b and c, below. I care much more about ordered-pair labels (OPLs) than tickmarks. OPLs are required. Tickmarks are not. On a test, I'm always looking for the labels. The tickmarks are just busy work that slows you down, when you're on the clock.
b. (10 pts) Use the Substitution Method
c. (10 pts) Use the Elimination Method.

$$
\begin{aligned}
5 x+11 y+z & =39 \\
4 x+9 y & =25 \\
-2 x-4 y-z & =-21
\end{aligned}
$$

2. ( 10 pts ) Use Elimination to solve the independent system of linear equations: $4 x+9 y=25$.

$$
x+2 y+3 z=5
$$

3. Consider the dependent system of linear equations: $2 x+7 y+8 z=6$.

$$
2 x+y+4 z=14
$$

a. (10 pts) Use Elimination to obtain the general solution. Be kind to your teacher and let $z$ be free! That means, find an expression for $x$ and $y$ in terms of the variable $z$.
b. (10 pts) Give the particular solutions corresponding to $z=0, z=1$ and $z=-1$.
4. The Underlying Assumption: All of the techniques we learn for solving systems of linear equations are based on the assumption that the systems have solutions. So when we arrive at a false (absurd!) statement after a few elimination steps, the only explanation is that there was no solution in the first place*. Our incorrect assumption* led to something absurd, like $0=10$ or $0=-5$.
*... or you made a mechanical error and should check your work, just to make sure. Stay organized and always check your work.

Higher Learning: In higher mathematics, this is the most basic method of proving something is false: "Assume it's true and conclude something absurd (like ' $0=1$ ')." It's important that you realize what's happening when you arrive at those absurdities at the end of a perfectly logical and legal sequence of moves. That said, let me finally get to the question:

$$
x+2 y+3 z=5
$$

(10 pts) Your Task: Show that the dependent system of linear equations $2 x+7 y+8 z=6$

$$
2 x+y+4 z=10
$$

has no solution. I expect to see the word "absurd" in your discussion.

