Here's an example:
A circle has the equation
$x^{2}+y^{2}+x-4 y+4=0$. Graph the circle using the center (h, k) and radius r . Find the intercepts, if any, of the graph.
$x^{2}+x \quad+y^{2}-4 y=-4$
$x^{2}+x+\left(\frac{1}{2}\right)^{2}+y^{2}-4 y+2^{2}=-4+\frac{1}{4}+4$
$\left(x+\frac{1}{2}\right)^{2}+(y-2)^{2}=\frac{1}{4}$

This is a circle, of radius $\sqrt{\frac{1}{4}}=\frac{1}{2}$, centered at $(-1 / 2,2)$
When you graph it, you see that it JUST touches the y-axis at $(0,2)$
Here's the one you asked about:
A circle has the equation $x^{2}+y^{2}+3 x+4 y+4=0$. Graph the circle using the center (h, k) and radius r. Find the intercepts, if any, of the graph.
$x^{2}+3 x+y^{2}+4 y=-4$
$x^{2}+3 x+\left(\frac{3}{2}\right)^{2}+y^{2}+4 y+2^{2}=-4+\frac{9}{4}+4$
$\left(x+\frac{3}{2}\right)^{2}+(y+2)^{2}=\frac{9}{4}$

This is a circle of radius $\sqrt{\frac{9}{4}}=\frac{3}{2}$, centered at $\left(-\frac{3}{2},-2\right)$. It just barely touches the y axis at $(0,-2)$. Circles that touch in two or more spots can be more involved, but these two aren't that involved. You get the intercepts just by correctly drawing the circle.

