2. For $f(x)=x^{2}-1$ and $g(x)=\sqrt{2 x-6}$, determine the following composite functions, simplify them, and state their domains:
a. (5 pts) $(f \circ g)(x)$
b. $(5 \mathrm{pts})(g \circ f)(x)$
3. (5 pts) What is the domain of $g(x)=\ln (2 x-6)$?
4. (5 pts) What is the domain of $\sqrt{\frac{(x+5)^{2}}{(x-4)(x-1)^{3}}}$? (This is like a Chapter 3 question!)
$A(P)=R($ Polymomial $) \quad D(y)=\{x / 2 x-6 \geq 0\}$

$$
\begin{aligned}
f\left(x \mid=x^{2}-1, g(x)=\sqrt{2 x-6}\right. & =\{x(2 x \geq 6\} \\
f(q(x)):(\sqrt{2 x-6})^{2}-1 \quad & =\{x \mid x \geq 3\} \\
=2 x-6-1-2 x-7 & =[3, \infty)
\end{aligned}
$$

$$
D=\{x(x \in \rho(g) \text { AnD } g(x) \in p(p)\}
$$

Siner $D C f)=R$, thes comescloum
to $\quad(\mathrm{g})=5 \times(x \geq 3]=[3, \infty)-19(\mathrm{Fog})$

$$
\begin{aligned}
& q\left(p(x)=\sqrt{2\left(x^{2}-1\right)-6}=\sqrt{2 x^{2}-2-6}\right. \\
& =\sqrt{2 x^{2}-8}=\sqrt{2\left(x^{2}-4\right)}
\end{aligned}
$$

Need Snece $(A C P=\mathbb{R}$, it comes down to meediss $D(x) \in \perp(9)$, ite.
$\sqrt{2\left(x^{2}-1\right)-6}$ meeds to le neal So $2\left(x^{2}-1\right)-6 \geq 0,3$ meoded.
so $2\left(x^{2}-4\right) \geq 0$ (sa above)

$$
2(x-2)(x+2) \geq 0
$$

So, cutreal pts are $x= \pm 2$

If you can Graph

or

$$
2\left(x^{2}-4\right)
$$

Then you can ser the sid n ondaene

Ne unit tho
so $S(g \circ f)=(-\infty,-2] \cup[2, \infty)$

$$
=\{x \mid x \leq-2 \text { or } x \geq 2\}
$$

Now you don't HAVE to graph it, to discern its sign pattern (positive/negative). You can also just use a test value in each interval, for instance, plug in $\mathrm{x}=0$ to test the sign in the interval $(-2,2) .(0)^{\wedge} 2-4=-4$ is all you need to know that it's <0 between -2 and +2 . That's the ---- signs in the sign pattern, above.

