MAT 121, Spring, 2013
100 Points

Test 1
Name \qquad

1. (5 pts) State whether the relation graphed below represents a function (Yes/No). If not, why not? What is the domain and what is the range of the relation?

2. (5 pts) Determine whether the equation $x^{2}+4 y^{2}=16$ defines y as a function of x. If it does not, show/explain why not, either by a general argument, or by finding an x-value in the domain that corresponds to more than one y-value in the range.
3. Let $f(x)=x^{2}-6 x+8$ and $g(x)=\sqrt{3 x-6}$.
a. Determine each of the following functions. Do not simplify.
i. $\quad(5 \mathrm{pts})(f+g)(x)$
ii. $(5 \mathrm{pts})(f \cdot g)(x)$
iii. (5 pts) $\left(\frac{f}{g}\right)(x)$
b. (5 pts) What is the domain of $\left(\frac{f}{g}\right)(x)$?
4. (5 pts) Let $f(x)=x^{2}+5$. Simplify the difference quotient $\frac{f(x+h)-f(x)}{h}$.
5. (5 pts) Find the average rate of change of f from $x=2$ to $x=3$. (Hint: Let $h=1$ and use your work from the previous problem, for an appropriate choice of x.)
6. (5 pts) The graph of a piecewise-defined function is given. Write its definition.

7. Use the graph of the function f, below, to answer the following questions. Assume you're seeing the entire function, and don't worry about what it might be doing off the edges.
a. (5 pts) x-intercept(s):
b. (5 pts) y-intercept(s):
c. (5 pts) The domain and range:

d. (5 pts) f has local minimum of \qquad at \qquad .
e. (5 pts) f has a local maximum of \qquad at \qquad .
f. (5 pts) f is increasing on \qquad .
g. (5 pts) f is decreasing on \qquad .
8. (6 pts) Sketch the graph of $f(x)=\left\{\begin{array}{cc}3 x+9 & \text { if }-5 \leq x<-1 \\ 1 & \text { if } x=-1 \\ -x & \text { if } x>1\end{array}\right.$. Show all intercepts.
9. Graph each of the following functions using the techniques of shifting, compressing, stretching, and/or reflecting. Start with the graph of the basic function and show all stages in separate sketches. Track 3 key points through the transformations, and show the y-intercept in the final sketch.
a. (7 pts) $g(x)=-2 \sqrt{x-5}+3$. ($\mathbf{2} \mathbf{~ p t s ~ b o n u s ~ - ~ S h o w ~} x$-intercepts in final graph.)
b. (7 pts) $g(x)=(x+6)^{2}-4$ (2 pts bonus - Show x-intercept(s) in final graph.)
