Find all points having an x-coordinate of 4 , whose distance from the point $(-2,-1)$ is 10 .
Translation: We need to find all values of y such that the distance from (4, y) to ($-2,-1$) is 10 .

The distance from $\left(x_{1}, y_{1}\right)=(-2,-1)$ to $\left(x_{2}, y_{2}\right)=(4, y)$ is given by

$$
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{(4-(-2))^{2}+(y-(-1))^{2}}=\sqrt{36+(y+1)^{2}}
$$

We want this distance to be 10 :

$$
\sqrt{36+(y+1)^{2}}=10
$$

Now we have an equation, we see that we must solve for y. Because of the square inside, there, we expect 2 different answers for y.

Square both sides:

$$
\begin{gathered}
\left(\sqrt{36+(y+1)^{2}}\right)^{2}=10^{2} \\
36+(y+1)^{2}=100
\end{gathered}
$$

Isolate the $(y+1)^{2}: \quad(y+1)^{2}=100-36=64$
Square Root Property: $\quad y+1= \pm \sqrt{64}= \pm 8$, so that

$$
y=-1 \pm 8
$$

This gives $y=7$ or $y=-9$. So the final answer is the two points

$$
(4, y)=(4,7) \text { or }(4,-9)
$$

Let me know if this helps. I'm a bit handicapped by technology when I'm at home.

