1. (20 pts) Starting with $f(x)=\log _{5}(x)$, sketch the graph of $g(x)=6 \cdot \log _{5}(7 x+21)+3$ in 5 steps (counting $f(x)=\log _{5}(x)$ as the first step). Use $x=\frac{1}{5}, x=1$, and $x=5$ to find 3 points in the first graph, and show how these 3 points are moved around by each step in the transformation to $g(x)$.
2. (10 pts) Find the exact x - and y-intercepts for $g(x)$ from \#1. That means no decimal approximations.
a. x-intercept: $A=$
b. y-intercept: $B=$

Label your final graph for $\# 1$ with the intercepts labeled with A and B.
3. (5 pts) Find the inverse, $g^{-1}(x)$, for $g(x)$ in \#1. The moves are very similar to what you did in \#2a.
4. Let $f(x)=\sqrt{x+10}$ and $g(x)=x^{2}+3 x-28$.
a. (5 pts) What is the domain of f ?
b. (5 pts) What is the domain of g ?
c. (5 pts) Determine $\left(\frac{f}{g}\right)(x)$. (Sometimes this is just called $\frac{f}{g}$ in the text.)
d. (5 pts) What is the domain of $\left(\frac{f}{g}\right)(x)$?
e. (5 pts) Determine $(f \circ g)(x)$ (Again, sometimes just called $f \circ g$).
f. (5 pts) What is the domain of $f \circ g$?
5. The next two domain questions are very closely related.
a. (5 pts) What is the domain of $\sqrt{\frac{(x-4)^{2}(x+3)^{3}}{(x-9)^{2}(x+2)^{3}}}$?
b. (5 pts) What is the domain of $\log _{11}\left(\frac{(x-4)^{2}(x+3)^{3}}{(x-9)^{2}(x+2)^{3}}\right)$?
6. (10 pts) Solve $\ln (x-7)+\ln (x+3)=\ln (11)$. Give the exact solution(s).
7. Suppose the half-life of C-14 is 4000 years. (It isn't, quite, but just suppose...).
a. (10 pts) Derive the exponential decay model, $A(t)=A_{0} e^{k t}$. The trick is to use the half-life to find the relative decay rate, k.
b. (5 pts) How old is a sample of charcoal from a prehistoric fire pit, if 47% of the $\mathrm{C}-14$ has decayed (i.e., 53% is left.) ? Round to the nearest year in your final answer. If it makes it easier for you, use an initial mass of 100 g of radioactive $\mathrm{C}-14$ and a final mass of 53 g of the radioactive material. It's the same thing.

Bonus Answer up to four (4) 5-pointers. That's a total of 20 bonus points possible. Points to be had. Standards are high.

B 1 (10 pts) Solve the absolute value inequality: $|-8 x+3|-8 \leq-5$. Yes, that's 10 points. Counts for 2 Bonus.

B 2 (5 pts) Re-write $f(x)=5 x^{2}-4 x-11$ in the form $a(x-h)^{2}+k$.

B 3 (5 pts) Solve the exponential equation $5 \cdot 4^{x}=6 \cdot \pi^{x}$. Give the exact answer in terms of natural logarithms.

B 4 (5 pts) Sketch the graph of $R(x)=\frac{(x-4)^{2}(x+3)^{3}}{(x-9)^{2}(x+2)^{3}}$.
B 5 (5 pts) Sketch the graph of $Q(x)=\sqrt{\frac{(x-4)^{2}(x+3)^{3}}{(x-9)^{2}(x+2)^{3}}}$
B 6 (5 pts) The population of Kokanee salmon at Dworshak reservoir was 300 Kokanee, when they first introduced the species on this date 1992. It's quite a coincidence that you'd be taking your test on the anniversary Since then, the population has grown exponentially, with a relative growth rate of 2% every year. What is the Kokanee population in Dworshak Reservoir, today? Round your answer to the nearest fish.
B 7 (5 pts) To the nearest year, when will (did) the population of Kokanee in the previous question reach 1,000?

B 8 (5 pts) Sketch the graph of $g(x)=-5 \cdot 3^{3 x+9}+11$.

B 9 (5 pts) Parents of newborn baby Jimmy want to make sure he can go to college, and they estimate it will cost $\$ 100,000$. They plan to set aside money every month and have a mutual fund that they believe will earn 5% interest, compounded monthly, over the long haul. How much should they set aside in order for little Jimmy to have $\$ 100,000$ in cold hard cash in his education fund on his $18^{\text {th }}$ birthday? Assume they make their first payment a month after Jimmy's born.

