\qquad

Use white paper provided, to do all your work. These question pages should only have your name on top. That's it. If you get stuck on a problem, start a fresh sheet of paper and come back to it, if time permits.

It is important that your work be submitted in the same order as the questions asked. I will not go on a treasure hunt, looking for work that is out of sequence. Put your scratch work WITH your work, so it's all there. If \#5 isn't between \#s 4 and 6, I won't find it.

Leave extra space. Add a " 121 Test 2 " header in big letters at the top of every page (i.e., LEAVE A MARGIN!)

1. Consider the relation $f=\{(-2,3),(1,5),(2,8),(3,-2)\}$.
a. (5 pts) Is f a function?
b. (5 pts) What is the domain of f ?
c. (5 pts) What is the range of f ?
d. (5 pts) Is f one-to-one? If not, explain why not.
2. Let $f(x)=\frac{x+2}{x-3}$ and $g(x)=\sqrt{x+4}$ and.
a. (5 pts) Write the function $\frac{f}{g}$. Do not simplify.
b. (5 pts) What is the domain of $\frac{f}{g}$? Give your answer in set notation and interval notation.
c. (5 pts) Write the function $f \circ g$. Do not simplify.
d. (5 pts) What is the domain of $f \circ g$? Give your answer in set notation and interval notation.
3. (5 pts) Simplify the difference quotient for $f(x)=3 x^{2}-5 x$.

Bonus (5 pts) Pass to the limit as h approaches zero, and show me some calculus to go with \#4.
4. (5 pts) Draw a picture for the difference quotient for $f(x)=x^{2}$. Describe what the difference quotient represents, in words. Do not simplify your difference quotient. That's a bonus problem, later on.
5. Let $g(x)=-3 \sqrt{-7 x+14}+5$.
a. (10 pts) Sketch the graph of $g(x)$, by transforming the basic function $f(x)=\sqrt{x}$. I want to see 3 points labeled in the graph of g - preferably starting with $(0,0),(1,1)$ and $(4,2)$ - and track where those points are moved to after every step, as demonstrated in class.
b. (5 pts) State the domain and range of $g(x)$, based on your final graph.
c. (5 pts) Find the x - and y-intercept of $g(x)$, and label them, clearly, on the graph.
6. (10 pts) Sketch the graph of $r(x)=-2(x+6)^{2}+8$ by transforming the basic function $f(x)=x^{2}$. I want to see 3 points labeled in the graph of f, and I want you to track where those points are moved to after every step, as demonstrated in class.
7. (5 pts) Find the x - and y-intercepts and add them to your final sketch, above. For x-intercept, leave final answer in simplified radical form.
8. (5 pts) Prove that $f(x)=\frac{x+7}{x-11}$ is one-to-one.
9. (5 pts) Suppose y is jointly proportional to the cube root of x and the cube of z, and inversely proportional to the square root of u and the square of w. Write an equation for this relationship between y, x, z, u, and w.
10. (5 pts) Explain why $x=y^{2}-5$ does not define y as a function of x.

Answer two of the following for Bonus (5 pts each)
B1: Simplify the difference quotient for the function $f(x)=\frac{1}{\sqrt{x}}$. Then pass to the limit, as h approaches zero.

B2: Complete the square to re-write the function $h(x)=3 x^{2}+5 x-5$ in the form $a(x-h)^{2}+k$. What is the vertex?

B3: What is the domain of $r(x)=\frac{x-5}{x^{2}-5 x-7}$?
B4: What is the domain of $w(x)=\frac{x^{77}-5 x^{12}+17 x}{\sqrt{-7 x+14}} \quad$ B5: Prove that $g(x)=-3 \sqrt{-7 x+14}+5$ is 1-to- 1 .

B6: Given $g(x)=-3 \sqrt{-7 x+14}+5$, find what $g^{-1}(x)$ is.

B7: Given $g(x)=-3 \sqrt{-7 x+14}+5$, find the domain and range of $g^{-1}(x)$.

