\qquad

1. (20 pts) Starting with $f(x)=4^{x}$, sketch the graph of $g(x)=2 \cdot 4^{x-3}-9$ in 4 steps (counting $f(x)=4^{x}$ as the first step). Use $x=-1, x=0$, and $x=1$ to find 3 points in the first graph, and show how these 3 points are moved around by each step in the transformation to $g(x)$. Finding the x - and y-intercepts is a separate problem, so don't worry about them, on this page.
2. Let $f(x)=\sqrt{2 x+4}$ and $g(x)=\frac{x-2}{x-7}$.
a. (5 pts) What is the domain of f ? \qquad
b. (5 pts) What is the domain of g ?
c. (5 pts) Write the function $\frac{f}{g}$. Do not simplify.
e. (10 pts) What is the domain of $\frac{f}{g}$?
d. (5 pts) Write the function $f \circ g$. Do not simplify.
3. (10 pts) Let $g(x)=2 \cdot 4^{x-3}-9$. Find the x - and y-intercepts for this function, rounded to 4 decimal places. For 5 bonus points, label these intercepts on your final graph on page 1.
4. Find the domain:
a. $(5 \mathrm{pts}) \sqrt{\frac{(x-2)(x+3)^{2}}{(x-7)^{4}(x+5)}}$. (Sign Pattern!)
b. $\quad(5 \mathrm{pts}) \log _{3}\left(\frac{(x-2)(x+3)^{2}}{(x-7)^{4}(x+5)}\right)$ (Reinterpret previous sign pattern in the current context!)
5. (10 pts) Solve $\log _{7}(x-4)+\log _{7}(x+2)=1$.
6. (10 pts) Solve $2^{x^{2}-8} \cdot 2^{-3 x}=4$.
7. (10 pts) The half-life of a radioactive isotope is 700 years. Find how old a sample is, if 95% of the isotope in an ancient manuscript has decayed (i.e., if only 5% of the radioactive isotope remains.). Give this answer to the nearest year.
8. (10 pts) Solve the equation $5 \cdot(1.08)^{x}=2^{x}$. Give an exact answer and a decimal answer, rounded to 4 places.

Solve any two (2) Bonus problems for up to 10 points. I'll grade the first two I come to.

1. BONUS (5 pts) Solve the absolute value inequality $|2 x-7| \geq 8$
2. BONUS (5 pts) Find the inverse function for $f(x)=\sqrt{2 x-6}+1$. Then state the domain and range for both f and f^{-1}.
3. BONUS (5 pts) Re-write the function $g(x)=5 x^{2}+10 x-19$ in the form $g(x)=a(x-h)^{2}+k$. State the vertex of this parabola.

This is the picture for Bonus \#4
4. BONUS (5 pts) Write the formula for the piecewise-defined function shown, above right.
5. Bonus (5 pts) Find the domain of the composite function $f \circ g$, from Page 2.

