1. (20 pts) Starting with $f(x) = 4^x$, sketch the graph of $g(x) = 2 \cdot 4^{x-3} - 9$ in 4 steps (counting $f(x) = 4^x$ as the first step). Use x = -1, x = 0, and x = 1 to find 3 points in the first graph, and show how these 3 points are moved around by each step in the transformation to g(x). Finding the *x*- and *y*-intercepts is a separate problem, so don't worry about them, on this page.

- 2. Let f(x) = √2x + 4 and g(x) = x-2/(x-7).
 a. (5 pts) What is the domain of f?
 b. (5 pts) What is the domain of g?
 c. (5 pts) Write the function f/g. Do not simplify.
 - e. (10 pts) What is the domain of $\frac{f}{g}$?

3. (10 pts) Let $g(x) = 2 \cdot 4^{x-3} - 9$. Find the *x*- and *y*-intercepts for this function, rounded to 4 decimal places. For 5 **bonus** points, label these intercepts on your final graph on page 1.

4. Find the domain:

a. (5 pts)
$$\sqrt{\frac{(x-2)(x+3)^2}{(x-7)^4(x+5)}}$$
. (Sign Pattern!)

b.
$$(5 \text{ pts})\log_3\left(\frac{(x-2)(x+3)^2}{(x-7)^4(x+5)}\right)$$
 (Reinterpret previous sign pattern in the current context!)

5. (10 pts) Solve $\log_7(x-4) + \log_7(x+2) = 1$.

6. (10 pts) Solve $2^{x^2-8} \cdot 2^{-3x} = 4$.

 (10 pts) The half-life of a radioactive isotope is 700 years. Find how old a sample is, if 95% of the isotope in an ancient manuscript has decayed (i.e., if only 5% of the radioactive isotope remains.). Give this answer to the nearest year.

8. (10 pts) Solve the equation $5 \cdot (1.08)^x = 2^x$. Give an exact answer and a decimal answer, rounded to 4 places.

Solve any two (2) Bonus problems for up to 10 points. I'll grade the first two I come to.

1. BONUS (5 pts) Solve the absolute value inequality $|2x-7| \ge 8$ 2. **BONUS** (5 pts) Find the inverse function for $f(x) = \sqrt{2x-6} + 1$. Then state the domain and range for both f and f^{-1} .

3. BONUS (5 pts) Re-write the function $g(x) = 5x^2 + 10x - 19$ in the form $g(x) = a(x-h)^2 + k$. State the vertex of this parabola.

4. BONUS (5 pts) Write the formula for the piecewise-defined function shown, above right.

5. Bonus (5 pts) Find the domain of the composite function $f \circ g$, from Page 2.

