1. (20 pts) Starting with $f(x)=4^{x}$, sketch the graph of $g(x)=2 \cdot 4^{x-3}-9$ in 4 steps (counting $f(x)=4^{x}$ as the first step). Use $x=-1, x=0$, and $x=1$ to find 3 points in the first graph, and show how these 3 points are moved around by each step in the transformation to $g(x)$. Finding the x-and y-intercepts is a separate problem, so don't worry about them, on this page.

$f(x)=4^{x}$

$$
2 f(x)=2 \cdot 4^{x}
$$

See page 3 For work
on Finding x - \& y-intercepts
to 4 decimal places.
2. Let $f(x)=\sqrt{2 x+4}$ and $g(x)=\frac{x-2}{x-7}$.
a. (5 pts) What is the domain of f ?

Need $2 x+4 \geq 0$

$$
\begin{aligned}
\quad \begin{array}{l}
2 x \geq-4 \\
D
\end{array} & \{x \mid x \geq-2\} \\
& =[-2, \infty)
\end{aligned}
$$

c. (5 pts) Write the function $\frac{f}{g}$. Do not simplify.

$$
\frac{\sqrt{2 x+4}}{\frac{x-2}{x-7}}
$$

e. (10 pts) What is the domain of $\frac{f}{g}$?
$d=\{x \mid x \in D(f)$ and $x \in D(g)$ and $g(x) \neq 0\}$

Need $g(x) \neq 0$
"And" means we need all 3 conditions satisfied, simultaneously.

$$
\frac{x-2}{x-7} \neq 0
$$

$x-2 \neq 0$ Only way for fac to be zero is if numerator is zero.

$$
x \neq 2
$$

3. (10 pts) Let $g(x)=2 \cdot 4^{x-3}-9$. Find the x - and y-intercepts for this function, rounded to 4 decimal places. For 5 bonus points, label these intercepts on your final graph on page 1.
$y-n t$

$$
\begin{aligned}
g(0) & =2 \cdot 4^{-3}-9 \\
& =2\left(\frac{1}{64}\right)-9 \\
& =\frac{1}{32}-\frac{9}{1} \cdot \frac{32}{32}
\end{aligned}
$$

$x-\sin t$

$$
g(x)=0
$$

$$
2 \cdot 4^{x-3}-9=0
$$

$$
2 \cdot 4^{x-3}=9
$$

$$
4^{x-3}=\frac{9}{2}
$$

$$
x-3=\log _{4}\left(\frac{9}{2}\right)
$$

$$
x=\log _{4}\left(\frac{2}{2}\right)+3
$$

$$
=\frac{\ln (9 / 2)}{\ln (4)}+3 \approx 4.084962501
$$

$$
=\frac{1-288}{32}=\frac{-287}{32} \approx-8.96875 \approx-8.9688
$$

a. $(5 \mathrm{pts}) \sqrt{\frac{(x-2)(x+3)^{2}}{(x-7)^{4}(x+5)}}$. (Sign Pattern!)

$$
\leadsto(0,-8.8688)
$$

Need $\frac{(x-2)(x+3)^{2}}{(x-7)^{4}(x+5)} \geq 0$

$$
(-\infty,-5) \cup\{-3\} \cup[2,7) \cup(7, \infty)
$$

$$
(-\infty,-5) \cup\{-3\} \cup[2,7) \cup(7, \infty)
$$

b. $(5 \mathrm{pts}) \log _{3}\left(\frac{(x-2)(x+3)^{2}}{(x-7)^{4}(x+5)}\right)$ (Reinterpret previous sign pattern in the current context!)

Domain:

$$
x-4>0 \text { and } x+2>0
$$

5. (10 pts) Solve $\log _{7}(x-4)+\log _{7}(x+2)=1$.

$$
\begin{gathered}
\log _{7}((x-4)(x+2))=1 \\
(x-4)(x+2)=7 \\
x^{2}-2 x-8=7
\end{gathered}
$$

$x>4$ and $x>-2$

$$
\{x \mid x>4\}
$$

This is why $x=-3 i s u t$
6. (10 pts) Solve $2^{x^{2}-8} \cdot 2^{-3 x}=4$.

$$
\begin{aligned}
& 2^{x^{2}-8-3 x}=2^{2} \\
& x^{2}-3 x-8=2 \\
& \frac{x^{2}-3 x-10=0}{x \in\{-2,5\}}
\end{aligned}
$$

Remaining
$A=A(t)=$ Amount of radioactive
isotope, as a function of $t=$ time, in year.

$$
A(t)=A_{0} e^{k t}
$$

7. (10 pts) The half-life of a radioactive isotope is 700 years. Find how old a sample is, if 95% of the isotope in an ancient manuscript has decayed (i.e., if only 5% of the radioactive isotope remains.). Give this answer
to the nearest year.
$\frac{1}{2}$-life is 700

$$
\begin{aligned}
A_{0} e^{700 K} & =\frac{1}{2} A_{0} \\
e^{700 K} & =\frac{1}{2} \\
700 K & =\ln (1 / 2) \\
k & =\frac{\ln (1 / 2)}{700}=-\frac{\ln 2}{700}=K
\end{aligned}
$$

There is only 5% of radioactive is tope left

$$
\begin{aligned}
& A_{0} e^{k t}=.05 A_{0} \\
& e^{k t}=.05 \\
& 1<t=\ln (.05) \\
& t=\frac{\ln (.05)}{k}=\frac{\ln (0.05)}{\frac{-\ln 2}{700}} \\
& \approx 3025.349666 \\
& \approx 3025 \text { yes of d }
\end{aligned}
$$

8. (10 pts) Solve the equation $5 \cdot(1.08)^{x}=2^{x}$. Give an exact answer and a decimal answer, rounded to 4

$$
\begin{aligned}
& \text { places. }\left(5.108^{x}\right)=\ln \left(2^{x}\right) \\
& \ln 5+\ln \left(1.08^{x}\right)=\ln \left(2^{x}\right) \\
& \ln 5+(\ln (1.08)) x=(\ln (2)) x \\
& A+B x=C x
\end{aligned}
$$

$$
\begin{aligned}
& B x-C x=-A \mid x \approx 2.6119 \\
& (B-C) x=-A \\
& x=\frac{-A}{B-C}=\frac{-\ln 5}{\ln 1.08-\ln 2} \\
& \approx 2.611934624 \pi 2.61192 x
\end{aligned}
$$

Solve any two (2) Bonus problems for up to $\mathbf{1 0}$ points. I'll grade the first two I come to.

1. BONUS (5 pts) Solve the absolute value inequality $|2 x-7| \geq 8$
2. BONUS (5 pts) Find the inverse function for $f(x)=\sqrt{2 x-6}+1$. Then state the domain and range for both f and f^{-1}.
3. BONUS (5 pts) Re-write the function $g(x)=5 x^{2}+10 x-19$ in the form $g(x)=a(x-h)^{2}+k$. State the vertex of this parabola.

This is the picture for Bonus \#4
4. BONUS (5 pts) Write the formula for the piecewise-defined function shown, above right.
(1) $|2 x-7| \geq 8$
$2 x-7 \geq 8$ or $2 x-7 \leq-6$
$2 x \geq 16$ or $2 x 4-1$

$$
\left\{x \left\lvert\, x \geq \frac{15}{2}\right. \text { on } x \leq-\frac{1}{2}\right\}
$$

$$
\left(-\infty,-\frac{1}{2}\right] \cup\left[\frac{4}{2}, \infty\right)
$$

(3)

$$
=5\left(x+2 x+1^{2}\right)-5()^{2}-19
$$

$$
\begin{aligned}
& S(x+1)^{2}-24 \\
& (h, k)=(-1-24)
\end{aligned}
$$

ALERNATE

$$
\begin{aligned}
&-\frac{b}{2 a}=-\frac{10}{2(5)}=-1=1 \\
& f\left(-\frac{4}{20}\right)=f(-1)=5(-1)^{2}+10(-1)-19 \\
&=5-29=-24=4 \\
& 0 f(x)=5\left(x-(-1)^{2}-24=5(x+1)^{2}-24\right.
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \sqrt{2 y-6}+1=x \quad Q(P)=[3, \infty)=R(R-1) \\
& \sqrt{2 y-6-x-1} \quad \quad R(F)=[1, \infty)=C(R-1) \\
& 2 y-6-(x-1)^{2} \\
& 2 y=(x-)^{2}+6 \\
& y=\frac{\frac{1}{2}(x-1)^{2}+3-C-1(x)}{O R \frac{1}{2} x^{2}-x+\frac{7}{2}}
\end{aligned}
$$

$$
\text { (4) } m_{1}=\frac{1-3}{-1+2}=\frac{-2}{1}=-2
$$

$$
\begin{aligned}
y & =-2(x-6-1)+1 \\
& =-2 x-2+1=-2 x-1 \\
m_{2} & =\frac{-2-1}{-1-4}=-\frac{3}{-5}=\frac{2}{5}
\end{aligned}
$$

$$
y=\frac{2}{5}(x-(-1)-2
$$

