1. (10 pts) Form a polynomial of minimial degree in factored form that has real coefficients (after expanding) and will have the given zeros. Do not expand your polynomial. Leave it factored! If you run out of room, you're doing it wrong!
$x=3$, multiplicity 2 ;
$x=3-7 i$, multiplicity 1 ;
$x=2$, multiplicity 4 .
2. (10 pts) Use synthetic division to find $P(3)$ if $P(x)=5 x^{5}-2 x^{3}+3 x^{2}-4 x+3$.
3. (5 pts) Represent the work you just did on the previous problem by writing $P(x)$ in the form Dividend $=$ Divisor \bullet Quotient + Remainder .
4. Suppose $f(x)=(x+3)^{2}(x-3)(x-6)=x^{4}-3 x^{3}-27 x^{2}+27 x+162$. I'm showing you both factored and expanded form to help you answer the following:
a. (10 pts) Provide a rough sketch of f, using its zeros, their respective multiplicities and its end behavior. Include x - and y-intercepts. Your graph should be smooth. Un-exaggerate the vertical for a better quality graph.
b. Solve the inequalities (You've done the work. Now, INTERPRET.):
i) (5 pts) $f(x)=(x+3)^{2}(x-3)(x-6)<0$
ii) (5 pts) $f(x)=\frac{(x+3)^{2}}{(x-3)(x-6)} \geq 0$
5. (10 pts) Find the real zeros of $f(x)=2 x^{5}-4 x^{4}-11 x^{3}+41 x^{2}-43 x+15$. Then factor f over the set of real numbers. This should involve an irreducible quadratic factor.
6. (5 pts) Find the remaining (nonreal) zeros of f and factor f over the set of complex numbers. This step requires breaking down the quadratic piece that's irreducible over the real numbers. The fundamental theorem tells us that nothing is irreducible over the complex numbers.
7. (5 pts) You don't need to graph $R(x)=\frac{2 x^{3}+6 x^{2}+4 x}{x^{2}-4}$, here, but I do want to see you graph its asymptotes.
8. (10 pts) Sketch the graph of $R(x)=\frac{3 x^{2}-13 x-4}{x^{2}-3 x-10}$. Show all asymptotes and intercepts.

ANSWER ANY TWO (2) OF THE FOLLOWING.

Bonus: (5 pts) Form a polynomial of minimial degree in factored form that has rational coefficients (after expanding) and will have the given zeros. Do not expand your polynomial. Leave it factored! If you run out of room, you're doing it wrong!

Zeros: $x=2+\sqrt{3}$, multiplicity $1 ; \quad x=2+3 i$, multiplicity $2 ; x=-5$, multiplicity 17 .

Bonus: (5 pts) What is the domain of $f(x)=\sqrt{\frac{(x+3)^{2}}{(x-3)(x-6)}}$? Hint: See previous work.

Bonus: (5 pts) Sketch the graph of $R(x)=\frac{2 x^{3}+6 x^{2}+4 x}{x^{2}-4}$. Hint: See previous work.

