I think it's great to see the pattern/relationship between logarithmic and exponential form. But I really want you to see an equation like this:

$$
\log _{9}(729)=3
$$

and see your way to the related, equivalent, exponential equation, by taking 9 to the power of both sides. Huh? I want you to see how these guys are inverse functions of one another and hammer at the skills for equationsolving, yet to come.
$9^{\log _{9}(729)}=9^{3}$
The line above implies
$729=9^{3}$
In the sequel, the first thing you should think of to find x in this equation
$3^{x}=77$
is
$\log _{3}\left(3^{x}\right)=\log _{3}(7)$, which is, of course, just
$x=\log _{3}(x)$.
The log extracts the x from the exponent, because logs and exponentials are inverse functions! Don't ever lose sight of that, just because the book has a cool, formulaic way of solving the equation, quickly.

Still, you probably want to do a little of that jazz, just to cement in your mind that $\log _{3}(729)$ is saying "What power of 3 does it take to get 729 , i.e., $729=3$ '. Log says "Show me your power!"

