\qquad

1. (5 pts) Determine whether the given function is linear or nonlinear. If it is linear, determine the slope.

\boldsymbol{x}	$\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$
-2	1
-1	3
0	5
1	7
2	9

2. Let $f(x)=7 x+2$ in the following:
a. (5 pts) Determine the slope and y-intercept of f.
b. (5 pts) Use the slope and y-intercept to graph f here:

c. (5 pts) Determine the average rate of change of f.
d. (5 pts) Is f increasing, decreasing or constant?
3. (5 pts) The velocity v of a falling object on the moon is directly proportional to the time t of the fall. If, after 2 seconds, the velocity of the object is 8 feet per second, what will its velocity be after 3 seconds? .
4. Let $f(x)=6 x^{2}+5 x-6$.
a. (5 pts) Find the zeros of f by factoring.
b. (5 pts) Find the zeros of f by completing the square.
c. (5 pts) Find the zeros of f by using the quadratic formula.
5. $f(x)=(x-3)^{2}-7$
a. (5 pts) Find the zeros of $f(x)$ using the Square Root Method.
b. (5 pts) What are the x-intercepts of the graph of $f(x)$?
6. (10 pts) Graph $f(x)=x^{2}-4 x-2$. I expect to see all of the following information on (or next to) your graph. You may use completing the square or the $-\frac{b}{2 a}$ method.:
i. vertex
ii. axis of symmetry
iii. y-intercept
iv. x-intercep(s), if any
v.domain
vi.range
vii.interval(s) of increase
viii.interval(s) of decrease
7. Consider the quadratic function $h(x)=6 x^{2}-5 x+3$.
a. (5 pts) Compute the discriminant for h.
b. (5 pts) Based on your answer to part a., describe the nature of the zeros of h. In other words, state how many zeros h has, and whether they're real or nonreal.
8. (5 pts) Solve $2 x^{2}<5 x+3$. Express your answer in both set-builder and interval notation.
9. (5 pts) Solve $2 x^{2}-17 x \geq-21$. Express your answer in both set-builder and interval notation.
10. Find the complex zeros of $f(x)=x^{2}-6 x+10$
11. Without solving, determine the character of the solutions of each equation in the complex number system.
a. (2 pts) $x^{2}+2 x+6$
b. (2 pts) $4 x^{2}-12 x+9$
c. $\left(2\right.$ pts) $2 x^{2}-4 x+1$
12. Solve each of the following absolute value equations:
a. (2 pts) $|2 x-1|=3$
b. (2 pts) $|2 x-1|=-3$
13. Solve each of the following absolute value inequalities. Give your answer in setbuilder and interval notation.
a. (3 pts) $|3 x-5|>-2$
b. (3 pts) $|3 x-5| \leq-2$
c. (3 pts) $|x-3|<2$
d. (3 pts) $|2 x+1| \geq 3$
