1. For each of the following functions, state the domain in interval notation.
a. (5 pts) $f(x)=\sqrt{2 x+6}$
b. (5 pts) $g(x)=\frac{2 x^{2}+x-15}{2 x+6}$
c. $(5 \mathrm{pts}) h(x)=\sqrt{\frac{(x+2)(x-1)}{(x-3)(x+3)}}$
d. $(5 \mathrm{pts}) \quad w(x)=\log _{3}\left(\frac{(x+2)(x-1)}{(x-3)(x+3)}\right)$
2. (10 pts) What is the average rate of change of the function $f(x)=x^{2}-3$ from $x=-1$ to $x=3$?
3. The domain of $f(x)=\sqrt{x+5}$ is $[-5, \infty)$ and the domain of $g(x)=\frac{2 x-4}{x-1}$ is $(-\infty, 1) \cup(1, \infty)$,
a. (10 pts) Find $\frac{f}{g}$ and determine its domain. Do not simplify $\frac{f}{g}$.
b. (10 pts) Find $f \circ g$ and determine its domain. Do not simplify $f \circ g$.
4. (10 pts) Graph $g(x)=-3 \sqrt{-2 x+6}+7$ by the techniques of shifting, stretching, compressing or reflecting. Start with the graph of a basic function and show all steps as demonstrated in Videos. I expect to see 3 points labeled in the first sketch, and to see where those points are moved to in each subsequent step. I strongly recommend using $(0,0),(1,1)$, and $(4,2)$ as the 3 points. I'm looking for 5 graphs, with the first being the basic function, $f(x)=\sqrt{x}$, and the final being $g(x)$. None of the graphs, between the first and the last is going to be either $f(x)$ nor $g(x)$, so, for the last time, don't call 'em all $f(x)!x$ - and y intercepts for 5 bonus points.
5. Find all real and nonreal solutions of the following equations:
a. $(10 \mathrm{pts}) 2 x^{2}-5 x-7=0$
b. (10 pts) $4 x^{2}-8 x+13=0$
c. $(10$ pts $) 9 x^{4}-30 x^{3}+38 x^{2}-22 x+5=0$. Hint: Try $x=1$. Heck, try it twice!
6. (10 pts) Based on your work on \#5, provide a rough sketch of the graph of $f(x)=9 x^{4}-30 x^{3}+38 x^{2}-22 x+5$. No double jeopardy. Whatever you get for \#5 is what I'll be looking for in this one.
7. Solve the following exponential and logarithmic equations. An exact answer is preferred. A decimal approximation is acceptable, if you are correct to the $5^{\text {th }}$ decimal place.
a. $(10 \mathrm{pts}) 5^{x}=97$
b. (10 pts) $\log _{5}(x)=97$
c. $(5 \mathrm{pts}) 3 \cdot 5^{x}=7^{x}$
d. $(10 \mathrm{pts}) \log _{7}(x-4)+\log _{7}(x+2)=1$
8. Solve the absolute value inequality. Give your final answer in set-builder and interval notation.
a. (15 pts) $|2 x-7| \geq 11$
9. (15 pts) Find the sum: $\sum_{k=1}^{\infty} 3 \cdot\left(-\frac{2}{3}\right)^{k-1}$

$$
2 x+10 z=48
$$

10. (15 pts) Solve the system of linear equations: $-2 x+y-11 z=-51$.

$$
3 x+2 y+14 z=71
$$

11. (10 pts) Write the equation for "The half-life of the radioactive isotope, Freakazoidium-99, is 9900 years," and solve the equation for the decay constant, k.
12. (10 pts) Based on your work, how much radioactive Freakazoidium remains in a 512-kilogram sample, after 100,000 years?
