\qquad

Date, Time:
Do your own work on separate paper. Leave plenty of margin and plenty of room around your work. I'm not impressed if you squeeze more work into a smaller space. To the contrary. At the end, please make sure your problems are in order. I'm too old and ornery to want to go on a scavenger hunt to award you points.

1. (20 pts) Starting with $f(x)=2^{x}$, sketch the graph of $g(x)=-3 \cdot 2^{x+5}+9$ in 4 steps (counting $f(x)=4^{x}$ as the first step). Use $x=-1, x=0$, and $x=1$ to find 3 points in the first graph, and show how these 3 points are moved around by each step in the transformation to $g(x)$. Finding the x - and y-intercepts is a separate problem, so don't worry about them, on this page. Label each sketch as some variation on $f(x)$, for instance, $7 \cdot 2^{x-11}-4$ would be $7 f(x-11)-4$.
2. (10 pts) Let . Find the x - and y -intercepts for this function, rounded to 4 decimal places. For 5 bonus points, label these intercepts on your final graph for \#1.
3. Let $f(x)=\sqrt{3 x-6}$ and $g(x)=\frac{x+10}{x+4}$.
a. (5 pts) What is the domain of f ?
b. (5 pts) What is the domain of g ?
c. (5 pts) Write the function $\frac{f}{g}$. Do not simplify.
d. (5 pts) What is the domain of $\frac{f}{g}$?
e. (5 pts) Write the function $f \circ g$. Do not simplify.
f. (5 pts) What is the domain of $f \circ g$?
4. Find the domain:
a. $(5 \mathrm{pts}) \sqrt{\frac{(x+3)(x-9)^{2}}{(x-13)^{3}(x-5)^{2}}}$. (Sign Pattern!)
b. $(5 \mathrm{pts}) \log _{3}\left(\frac{(x+3)(x-9)^{2}}{(x-13)^{3}(x-5)^{2}}\right)$ (Reinterpret previous sign pattern in the current context!)
5. (10 pts) Solve $\log _{7}(2 x+3)+\log _{7}(x-3)=\log _{7}(4 x+6)$.
6. (10 pts) Solve $3^{x^{2}-12} \cdot 3^{-2 x}=27$
7. (10 pts) The half-life of a radioactive isotope is 950 years. Find how old a sample is, if 82% of the isotope in an ancient manuscript has decayed (i.e., if only 18% of the radioactive isotope remains.). Give this answer to the nearest year.

Solve any two (3) Bonus problems for up to 15 points. I'll grade the first two I come to.

1. BONUS (5 pts) Solve the equation $2 \cdot(1.3)^{x}=5 \cdot(1.1)^{x}$. Give an exact answer and a decimal answer, rounded to 4 places.
2. BONUS (5 pts) Solve the absolute value inequality $|2 x-7| \geq 8$. Use a number line and
 either union or intersection ('and' or 'or') to find the solution.
3. BONUS (5 pts) The absolute value inequality $|2 x-7| \geq-8$ is always true, since absolute value can never be negative. But show the steps and manage your and's and or's, with a number line graph at the end to interpret what the algebra is telling you.
4. BONUS (5 pts) The absolute value inequality $|2 x-7|<-8$ is never true, since absolute value can never be negative. But show the steps and manage your and's and or's, with a number line graph at the end to interpret what the algebra is telling you.

Slope $=m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ and $y=m\left(x-x_{1}\right)+y_{1}$
Continuous growth/decay/compounding: $A(t)=A_{0} e^{k t}$
Periodic Compounding: $A(t)=A_{0}\left(1+\frac{r}{m}\right)^{m t}$ or $=P\left(1+\frac{r}{m}\right)^{m t}$ or $=P(1+i)^{n}$.
$a x^{2}+b x+c=0 \Rightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$a x^{2}+b x+c=a(x-h)^{2}+k$, where $(h, k)=\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)$
Difference Quotient $=\frac{f(x+h)-f(x)}{h}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=$ average slope.
$a+a r+a r^{2}+\cdots+a r^{n-2}+a r^{n-1}=\sum_{k=1}^{n} a r^{k-1}=a\left(\frac{1-r^{n}}{1-r}\right)$ or $a\left(\frac{r^{n}-1}{r-1}\right)$
If $|r|<1$, then $a+a r+a r^{2}+\cdots \cdots+a r^{n-2}+a r^{n-1}+\cdots \cdots=\sum_{k=1}^{\infty} a r^{k-1}=a\left(\frac{1}{1-r}\right)$

