1. For each of the following functions, state the domain in set-builder notation and in interval notation.
a. (5 pts) $f(x)=\sqrt{3 x+5}$
b. (5 pts) $g(x)=\frac{x^{2}+13}{3 x+5}$
c. $(5 \mathrm{pts}) h(x)=\frac{x^{2}+13}{\sqrt{3 x+5}}$
2. (5 pts) If $f(x)=|3 x+5|$, what is $f(-8)$?
3. (10 pts) What is the average rate of change of the function $f(x)=x^{2}+1$ from $x=3$ to $x=4$?
4. (5 pts) Consider the relation $\mathbf{R}=\{(2,4),(3,-2),(5,6),(6,4),(7,2)\}$ and fill in the following:
a. Domain
b. Range
c. Is \mathbf{R} a function?
d. If \mathbf{R} is a function, is it a 1-to-1 function? (Yes, No or DNA)
5. Let $f(x)=\frac{x-2}{x-3}$ and $g(x)=\sqrt{5 x+10}$.
a. (5 pts) What is the domain of f ?
b. (5 pts) What is the domain of g ?
c. (5 pts) Write the function $(f-g)(x)$. Do not simplify. What is its domain?
d. (5 pts) Write the function $\left(\frac{f}{g}\right)(x)$. Do not simplify. What is its domain?
e. (5 pts) Write the function $(f \circ g)(x)$. Do not simplify. What is its domain?
6. (10 pts) Determine the equation of the line from its graph. Give the equation in...
a. ... point-slope form and
b. ... slope-intercept form.

7. Graph each of the following by the techniques of shifting, stretching, compressing or reflecting. Start with the graph of a basic function and show all steps as demonstrated in Videos. I expect to see 3 points labeled in the first sketch, and to see where those points are moved to in each subsequent step.
a. (10 pts) $g(x)=3(x+4)^{2}-2$
b. (10 pts) $g(x)=-3 \sqrt{2-x}+4$
8. (10 pts) Sketch the graph of the piecewise-defined function $f(x)=\left\{\begin{array}{cc}-x+3 & \text { if }-3 \leq x \leq 2 \\ (x-2)^{2}-1 & \text { if } x \geq 2\end{array}\right.$. You don't have to show all steps with that $2^{\text {nd }}$ piece, like I wanted for \#7a, above. You can safely read the vertex from the definition. But I do want to see special care taken at the endpoints of the pieces. I also expect to see the x - and y-intercepts for f.
1
