1. For each of the following functions, state the domain in interval notation.
a. (5 pts) $f(x)=\sqrt{3 x-7}$
b. (5 pts) $g(x)=\frac{x^{2}-4 x+3}{3 x-7}$
c. $(5 \mathrm{pts}) h(x)=\sqrt{\frac{(4 x-16)(x-1)}{(2 x-5)(x+3)}}$
d. $(5 \mathrm{pts}) \quad w(x)=\log _{4}\left(\frac{(4 x-16)(x-1)}{(2 x-5)(x+3)}\right)$
2. (10 pts) What is the average rate of change of the function $f(x)=x^{2}+5$ from $x=1$ to $x=3$?
3. The domain of $f(x)=\sqrt{x-1}$ is $[1, \infty)$ and the domain of $g(x)=\frac{2 x-4}{x+2}$ is $(-\infty,-2) \cup(-2, \infty)$,
a. (5 pts) Find $\frac{f}{g}$ and determine its domain. Do not simplify $\frac{f}{g}$.
b. (5 pts) Find $f \circ g$ and determine its domain. Do not simplify.
4. (10 pts) Use the points marked as dots to derive an equation of the line from its graph.

5. (10 pts) Graph $g(x)=-2 \sqrt{-3 x+6}+5$ by the techniques of shifting, stretching, compressing or reflecting. Start with the graph of a basic function and show all steps as demonstrated in Videos. I expect to see 3 points labeled in the first sketch, and to see where those points are moved to in each subsequent step. I strongly recommend using $(0,0),(1,1)$, and $(4,2)$ as the 3 points. I'm looking for 5 graphs, with the first being the basic function, $f(x)=\sqrt{x}$, and the final being $g(x)$. None of the graphs, between the first and the last is going to be either $f(x)$ nor $g(x)$, so, for the last time, don't call 'em all $f(x)!x$ - and y intercepts for 5 bonus points.
6. Find all real and nonreal solutions of the following equations:
a. $(10 \mathrm{pts}) 2 x^{2}-x-10=0$
b. (10 pts) $4 x^{2}-12 x+10=0$
c. $(10$ pts $) 2 x^{4}-2 x^{3}-13 x^{2}+28 x-15=0$
7. (10 pts) Based on your work on \#6, provide a rough sketch of the graph of $f(x)=2 x^{4}-2 x^{3}-13 x^{2}+28 x-15$
8. Solve the following exponential and logarithmic equations. An exact answer is preferred. A decimal approximation is acceptable, if you are correct to the $5^{\text {th }}$ decimal place.
a. $(10 \mathrm{pts}) 3^{x}=97$
b. (10 pts) $\log _{4}(x)=97$
c. $(5 \mathrm{pts}) 3 \cdot 5^{x}=7^{x}$
d. $(10 \mathrm{pts}) \log _{2}\left(x^{2}+2 x+1\right)=4$
9. Solve the absolute value inequality. Give you final answer in set-builder and interval notation.
a. $(15 \mathrm{pts})|2 x-7|>11$
10. (15 pts) Find the sum: $3-6+12-24+\cdots \cdots+768$

$$
x-5 y+13 z=-35
$$

11. (15 pts) Solve the system of linear equations: $3 x-14 y+37 z=-98$.

$$
4 x-18 y+49 z=-127
$$

12. (10 pts) Write the equation for "The half-life of the radioactive isotope, Freakazoidium-99, is 450 years," and solve the equation for the decay constant, k.
13. (10 pts) Based on your work, how much radioactive Freakazoidium remains in a 512 -kilogram sample, after 3600 years? (You can logic this one out, but I'm looking for something based on your previous work.)
