1. (20 pts) Starting with $f(x)=3^{x}$, sketch the graph of $g(x)=2 \cdot 5^{x+4}-3$ in 4 steps (counting $f(x)=3^{x}$ as the first step). Use $x=-1, x=0$, and $x=1$ to find 3 points in the first graph, and show how these 3 points are moved around by each step in the transformation to $g(x)$. Your final graph should also show the y intercept and, for 5 bonus points, the x-intercept.
2. Let $f(x)=\sqrt{2 x+8}$ and $g(x)=\frac{1}{x+2}$.
a. (5 pts) What is the domain of f ?
b. (5 pts) What is the domain of g ?
c. (5 pts) Determine $(f+g)(x)$. (Sometimes just called " $f+g$ " in the text.). Do not simplify.
d. (5 pts) What is the domain of $(f+g)(x)$?
e. (5 pts) Determine $(f \circ g)(x)$ (Again, sometimes just called $f \circ g$)
f. (5 pts) What is the domain of $(f \circ g)(x)$? Hint: An interval of length $1 / 2$.
3. (5 pts) What is the domain of $\sqrt{\frac{(x+3)(x-2)^{2}}{(x-4)^{3}}}$?
4. (5 pts) Let $f(x)=5^{2 x-5}-3$. Find $f^{-1}(x)$.
5. Find the geometric sums:
a. $(10 \mathrm{pts}) 1+3+9+27+\ldots \ldots+19683$
b. $(5 \mathrm{pts}) \sum_{n=1}^{\infty} 2 \cdot\left(\frac{2}{3}\right)^{n-1}$
6. (5 pts) Solve $\log _{2}(x-4)+\log _{2}(x+3)=3$.
7. Suppose the half-life of $\mathrm{C}-14$ is 5900 years. (It isn't, quite, but just suppose...).
a. (10 pts) Derive the exponential decay model, $A(t)=A_{0} e^{k t}$. The trick is to use the half-life to find the relative decay rate, k.
b. (5 pts) How old is a sample of charcoal from a prehistoric fire pit, if 43% of the $\mathrm{C}-14$ has decayed (i.e., 35% is left.) ? Round to the nearest year in your final answer.
