1. (5 pts) Find an equation of the line through the points $(-1,2)$ and $(3,5)$.
2. (5 pts) Sketch the graph of the line whose equation you found in \#1, above. Show x-and y-intercepts.
3. (5 pts) Is the linear function in $\# \mathrm{~s} 1$ and 2 increasing or decreasing?
4. Suppose y varies jointly as x and the square of z and inversely as the square root of w.
a. (5 pts) Write an equation representing the relationship.
b. (5 pts) Suppose $y=24$ when $x=1, z=2$ and $w=4$. What, then, is y when $x=2, z=3$ and $w=4$?
5. Compute the discriminant for each of the following quadratic and tell me the nature of solutions, specifically, how many distinct solutions there are and whether they're real or non-real. Do not solve the equations. I'll throw a couple extra points of bonus your way if you distinguish between rational and irrational solutions.
a. (5 pts) $x^{2}-6 x-19=0$
b. (5 pts) $9 x^{2}-30 x+53=0$
c. $(5 \mathrm{pts}) 6 x^{2}-25 x+14=0$
6. Solve by any method, but show all work!!!
a. (5 pts) $x^{2}-6 x-19=0$
b. (5 pts) $9 x^{2}-30 x+53=0$
c. $(5 \mathrm{pts}) 6 x^{2}-25 x+14=0$
7. (5 pts) Solve $x^{2}-6 x-55=0$ by completing the square.
8. (10 pts) Complete the square for $f(x)=x^{2}-6 x-55$, and re-write it in the form $f(x)=a(x-h)^{2}+k$. This is very similar to what you just did in \#7, but you're manipulating an expression, rather than solving an equation, here. Use your work to sketch a graph of $f(x)$ that includes vertex, x - and y-intercepts, labeled as ordered pairs. I refuse to count tickmarks on the x - or y-axis.
9. (5 pts) Based on your work on \#8, state the domain and range of $f(x)$.
10. (5 pts) State intervals of increase and decrease for $f(x)$ from \#s 8 and 9 .
11. (10 pts) Well, you've done so much with $f(x)=x^{2}-6 x-55$, now I want you to solve the inequality $3 x^{2}+2 x-20 \leq 2 x^{2}+8 x+35$. That was a hint, by the way.
12. (5 pts) Solve $|7 x+6|>11$. Give your answer in set-builder and interval notation.

Bonus Now, tell me what the domain of $g(x)=\sqrt{-x^{2}+6 x+55}$ is.

