100 Points

(x,y1) (x2,42)

1. (5 pts) Find an equation of the line through the points (-1, 2) and (3, 5).

(5 pts) Find an equation of the line through the points (-1, 2) and (3, 5).
$$y = \frac{3}{4}x + \frac{3}{4} + \frac{3}{4}x + \frac{3}{4}$$

(5 pts) Sketch the graph of the line whose equation you found in #1, above. Show x-and y-intercepts.

$$y=0 \rightarrow \frac{3}{4}x + \frac{11}{4} = 0$$
 $3x = -\frac{11}{4}$
 $x = -\frac{11}{4} = -\frac{11}{3}$
 $(-\frac{1}{3}, 0)$
 $y=0 \rightarrow y = \frac{1}{4}$
 $(0, \frac{4}{4})$

3. (5 pts) Is the linear function in #s 1 and 2 increasing or decreasing?

- Suppose y varies jointly as x and the square of z and inversely as the square root of w.
 - a. (5 pts) Write an equation representing the relationship.

b. (5 pts) Suppose y = 24 when x = 1, z = 2 and w = 4. What, then, is y when x = 2, z = 3 and w = 4?

$$24 = \frac{(1)(2)^2}{\sqrt{4}} = 2K$$

$$\rightarrow$$
 12=K
 \rightarrow y= 12. $\frac{2.3^2}{\sqrt{4}}$ = 12.9 = 108, when x=2, 2=3, and w=4.

- 5. Compute the discriminant for each of the following quadratic and tell me the nature of solutions, specifically, how many distinct solutions there are and whether they're real or non-real. Do not solve the equations. I'll throw a couple extra points of bonus your way if you distinguish between rational and irrational solutions.
 - a. (5 pts) $x^2 6x 19 = 0$

$$b^2 + ac = (-6)^2 + (1)(-19) = 36 + 76 = 112$$

b. (5 pts) $9x^2 - 30x + 53 = 0$

b. (5 pts)
$$9x^3 - 30x + 53 = 0$$

 $b^2 + 2c = (-30)^2 - 4(9)(53) = -1008$ 2 monreal

c. (5 pts) $6x^2 - 25x + 14 = 0$

6. Solve by any method, but show all work!!!

a. (5 pts)
$$x^2 - 6x - 19 = 0$$

$$(x-3)^2 = 28$$

$$x = \frac{6 \pm 4\sqrt{7}}{2}$$

(5 pts) $6x^2 - 25x + 14 = 0$

(c) (14) =
$$(2)(3)(7)(2)$$

$$3\times(2X-7)-2(2X-7)=0$$

$$(2x-7)(3x-2)=0$$
 $x=\frac{2}{5}$

h=4ac=-1008, 64#5

$$= \frac{15 \pm 6\sqrt{7} \cdot \hat{v}}{a}$$

want a sum of

7. (5 pts) Solve $x^2 - 6x - 55 = 0$ by completing the square.

$$x^{2}-6x = 55$$

 $x^{2}-6x + 3^{2} = 55 + 9$
 $(x-3)^{2} = 64$
 $x-3 = \pm 8$
 $x=3\pm 8$

(Stylish solution

8. (10 pts) Complete the square for $f(x) = x^2 - 6x - 55$, and re-write it in the form $f(x) = a(x - h)^2 + k$. This is very similar to what you just did in #7, but you're manipulating an expression, rather than solving an equation, here. Use your work to sketch a graph of f(x) that includes vertex, x- and y-intercepts, labeled as ordered pairs. I refuse to count tickmarks on the x- or y-axis.

$$f(x) = x^{2} 6x - 55$$

$$= x^{2} 6x + 3^{2} - 9 - 55$$

$$= (x - 3)^{2} - 64$$

$$(h, K) = (3, -64)$$

$$By previous work,$$

$$x = -5, 11 solves f(x) = 0$$

$$(x - in + 5!)$$

$$f(0) = -55 \sim 0 (0, -55)$$

$$3 y - in + 5$$

9. (5 pts) Based on your work on #8, state the domain and range of f(x).

10. (5 pts) State intervals of increase and decrease for f(x) from #s 8 and 9.

11. (10 pts) Well, you've done so much with $f(x) = x^2 - 6x - 55$, now I want you to solve the inequality $3x^2 + 2x - 20 \le 2x^2 + 8x + 35$. That was a hint, by the way.

12. (5 pts) Solve |7x + 6| > 11. Give your answer in set-builder and interval notation.

