MAT 121 Online, FINAL TEST, Spring, 2013
200 Points (10 pts) Name
This is our final learning opportunity together, and I'm hoping to take full advantage. Read the questions carefully. It's possible to earn points on a problem by knowing that you did something wrong and clearly explaining how you know and what you're trying to accomplish, and how you're going about it. More points for solid terminology and English.

1. Solve the equation $x^{2}-3 x+2=0$ in two different ways:
part a (10 pts) Factoring \mid part b (10 pts) Completing the square
2. Solve the absolute value inequality. Give your answer in set-builder and interval notation.
part a
(10 pts) $|3 x-2| \geq 5$
part b (10 pts) $|3 x-2|<5$
\#2 cnt'd (These last two are supposed to be easy! Conceptual.
part c (5 pts) $|7 x+2| \geq-4 \quad$ part d $\quad(5 \mathrm{pts})|2 x-7|<-4$
3. Find the domain of each of the following:

$$
\text { part a } \quad(10 \mathrm{pts}) \quad f(x)=\frac{x^{2}-9}{x^{2}+5 x-14}
$$

part b (10 pts) $f(x)=\sqrt{x^{2}+5 x-14}$
part c (10 pts) $\log _{3}\left(x^{2}+5 x-14\right)$
4. (10 pts) Let $f(x)=x^{2}-2 x$. Simplify the difference quotient $\frac{f(x+h)-f(x)}{h}$.
5. (15 pts) Form a polynomial (in factored form) that will have real coefficients after expanding (which you shouldn't bother to do!) that has the following zeros with the respective multiplicities:
$x=3$, multiplicity $=2$
$x=-5$, multiplicity $=1$
$x=3-7 i$, multiplicity $=1$
(5 pts) What's the minimum possible degree for the polynomial described?
6. Let $f(x)=x^{4}-5 x^{3}+3 x^{2}+19 x-30$.

part b (10 pts) Show that $x=-2$ is a root of f by dividing your quotient in part a by $x-2$. This question, in itself ought to give you a very clear idea of what your conclusion ought to have been in part a.
part c (15 pts) Compute the discriminant of $x^{2}-4 x+5$. Then find the two nonreal roots of $x^{2}-4 x+5$, by any method (short of copying from someone else).

Bonus (10 pts) Write f as the product of linear factors. Hint: If your work from \#6 is up-to-snuff, then the hard part is already done, and I've given you just enough touchstones to help you know when you're right, or have a good reason why you aren't. You can still earn the Bonus without \#6 by making up plausible answers and incorporating them into the answer to this question. It should have 2 real and 2 nonreal zeros represented by the factors.
7. (10 pts) Determine a, r and n for the finite geometric series $5+\frac{5}{2}+\frac{5}{4}+\ldots+\frac{5}{128}$

Use a, r, and n to determine the sum by the formula $\sum_{k=1}^{n} a \cdot r^{k-1}=a\left(\frac{1-r^{n}}{1-r}\right)$. A fractional answer is better, but I'll give you most of the points if you provide a decimal answer that is accurate to 4 decimal places.
8. (10 pts) Use Pascal's Triangle (Binomial Theorem) to expand the binomial power $(x-3)^{5}$. Expanding without using a recognizable version of this technique will earn at most 2 points.
9. (10 pts) Graph $g(x)=-(x-2)^{2}+16$ using the techniques of shifting and reflecting. Start with the graph of the basic function $f(x)=x^{2}$ and show all stages. In the final graph, indicate (label as ordered pairs) the x - and y-intercepts.
10. (15 pts) Solve the system of linear equations $\begin{gathered}2 x+3 y=7 \\ 3 x-4 y=-10\end{gathered}$

